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Abstract Ionospheric storms can have important effects on radio communications and navigation systems.
Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these
problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements
are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling
Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition.
This study assesses the effect on 1h predictions of specifying initial ionospheric and thermospheric conditions
using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction
performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density
observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the
storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison.
The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the
Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized
GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric
Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the
model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance
estimates. The approach is effective in correcting model biases but does not capture all the behavior of the
storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the
importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

1. Introduction

Ionospheric forecasting is challenging because the variability of the geophysical system is largely dependent
on influences from the thermosphere (itself forced by the lower atmosphere), the magnetosphere, and EUV
sunlight. These drivers of ionospheric behavior are especially difficult to predict during storms, so we cannot
rely on having accurate knowledge of them in advance. Empirical ionospheric forecasts have been published
by Tulunay et al. [2006], Habarulema et al. [2011], Jakowski et al. [2011], and others. Utah State University’s
Global Assimilation of Ionospheric Measurements (GAIM) has an ionospheric forecasting capability that uses
a global, physics-based ionospheric model with specified thermospheric parameters [McNamara et al., 2007],
the results of which are available through NASA’s Community Coordinated Modeling Center. Cander [2015]
shows that neural networks can predict quiet time ionospheric behavior accurately at ionosonde stations,
but that they falter somewhat during extreme solar events. This study presents storm time ionospheric
predictions from a global, physics-based, coupled thermosphere-ionosphere ensemble data assimilation
scheme that ingests TEC observations, adjusts thermospheric and ionospheric parameters, and facilitates
forecasting of TEC. Comparisons are performed in the continental USA, where many observations are
available and the model and observations are likely to be more reliable.

1.1. Ionospheric Storms

Buonsanto [1999] provides a comprehensive review of ionospheric storms. The ionospheric electron density is a
function of solar flux, neutral composition, and dynamical effects due to neutral winds and electric fields. During
geomagnetic storms, intense electric fields aremapped from themagnetosphere along geomagnetic field lines
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to the high-latitude ionosphere. These electric fields cause rapid convection at high latitudes and sometimes
penetrate to low latitudes. The high-latitude plasma convection drives neutral winds and heating through
ion-neutral collisions. Both positive and negative effects can be seen in the ionospheric electron density at
midlatitudes during storms. In the main phase of storms, increased electron densities are caused primarily by
equatorward neutral winds blowing plasma upward along geomagnetic field lines, where recombination is
slower. In the recovery phase, decreased electron densities are caused by atomic oxygen depletions and
molecular nitrogen enhancements that result in reduced production rates. The recent work of Borries et al.
[2015] quantifies the storm time TEC response to interplanetary magnetic field (IMF), season, and local time
and highlights the important role of winds and composition in translating these drivers into TEC variations.

1.2. Forecasting

Data assimilation techniques combine model forecasts with observations to improve the estimate of the state
of a geophysical system. In meteorology, the fundamental limitation to forecast accuracy is related to the
sensitivity of model dynamics to initial conditions, so it is possible to produce good forecasts by combining
an accurate specification of the initial state of the dynamical system with a sophisticated numerical model
[Kalnay, 2003]. The ionosphere is not self-contained to the degree that the lower atmosphere is, so the effect
of ionospheric data assimilation on forecast accuracy is often inherently limited by the variability of external
drivers. As Chartier et al. [2013] indicated in a simulation study, knowledge of the initial ionospheric state can
only improve storm time forecasts for periods of a few hours in situations where the solar, magnetospheric
and thermospheric drivers are not known accurately. However, the ionospheric electron density is compara-
tively easier to observe than these drivers thanks to advances in remote sensing techniques. If it is possible
to infer knowledge of thermospheric, magnetospheric, and solar behavior from ionospheric observations,
then that is likely to substantially improve forecast accuracy using ionospheric data assimilation. Several authors
[e.g., Pi et al., 2003; Codrescu et al., 2004; Matsuo et al., 2013] have explored the possibility of forcing parameter
estimation from ionospheric observations. In this study, we estimate several thermospheric and ionospheric
parameters from ionospheric observations.

1.3. Thermospheric and Ionospheric Models

Given that the state of the ionosphere is largely determined by external influences, especially during storms,
accurate knowledge of the temporal evolution of those external influences from themagnetosphere and Sun
is essential to producing good ionospheric forecasts. Ideally, the entire geophysical system, from the Earth to
the Sun, would be represented in a single coupled model, but technical and computational limitations mean
that this is not currently feasible. Instead, it is necessary to draw boundaries around the areas that exhibit
strong mutual coupling. From a modeling perspective, the most common approach has been to couple
the thermosphere with the ionosphere [Roble et al., 1988; Fuller-Rowell et al., 1996; Ridley et al., 2006],
although there have been more recent developments in whole atmosphere [Fuller-Rowell et al., 2010; Liu
et al., 2010; Jin et al., 2012] and coupled magnetosphere-ionosphere [Raeder et al., 2001; W. Wang et al.,
2004] modeling. In this paper, we treat the thermosphere-ionosphere as one unified geophysical system,
and the term “external” refers to anything outside the thermosphere-ionosphere system. Solar and magneto-
spheric drivers, as well as waves propagating upward from themesosphere, must then be specified externally
to the thermosphere-ionosphere forecasting process.

1.4. Observations

Ground-based dual-frequency Global Positioning System (GPS) receivers currently provide the largest source
of ionospheric measurements in the form of integrated electron density along the path from the ground
station to the satellite. This is referred to as slant total electron content (TEC). These slant measurements
could be directly ingested into the data assimilation scheme used here, but their use would require intensive
data preprocessing (bias correction and cycle slip detection) and the development of an experimental
three-dimensional covariance localization function that does not currently exist in the Data Assimilation
Research Testbed (DART). Such a development would require an understanding of the accuracy of modeled
covariances between electron densities at all altitudes and the integrated slant TEC, including the depen-
dence on satellite elevation angle. Therefore, it is more straightforward for us to use vertical TEC values
provided by the Massachusetts Institute of Technology (MIT) Haystack observatory. The MIT processing
approach, named MAPGPS, was developed by Coster et al. [2003] and is explained in detail in Rideout and
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Coster [2006]. The algorithm detects and corrects cycle slips, applies phase smoothing to the pseudorange
observations, and corrects for satellite and receiver biases using a multimethod approach. Slant TEC
estimates produced by these steps are converted to vertical TEC values using an adjusted cosine mapping
function (adjustment factor = 0.95) and a pierce-point of 450 km. Data are binned into 1° and 5min averages.
In the absence of a published error estimate for this technique, we base our observation error estimate (5 total
electron content unit (TECU; 1 TECU= 1016 elm�2)) on the work of Hernández-Pajares et al. [2009], who report
standard deviations of 4.42–6.84 TECU for five different vertical GPS TEC algorithms against TOPEX and
Jason-1 vertical TEC observations. Those standard deviations include the error due tomapping the TEC recon-
struction grid to the locations of TOPEX/Jason-1 data as well as the slant-to-vertical conversion, whereas
Mannucci et al. [2005] report a slant TEC figure of ~1–3 TECU for data that do not include the mapping and
slant-to-vertical errors.

Validation of the assimilation results is performed using two independent data sets—electron density profiles
from MIT Haystack and Arecibo Incoherent Scatter Radars (ISRs) and point electron densities from the
Langmuir probe on the Challenging Minisatellite Payload (CHAMP) [Reigber et al., 2000]. Millstone Hill is at
42.6°N, 71.5°W, and Arecibo is at 18.4°N, 66.6°W. CHAMP had a polar orbit at approximately 370 km and
360 km altitude in January and September 2005, respectively.

1.5. Data Assimilation

There are a number of approaches to the problemof combining observations withmodel forecasts (also known
as the background) to produce analyses of the current state of a geophysical system that are referred to as data
assimilation techniques. The most common data assimilation techniques are known as 3D-Var, 4D-Var, and
ensemble Kalman filters (EnKF) [Daley, 1993]. An EnKF is used in this study, and Evensen [2003] provides a
comprehensive reference for this class of techniques. The EnKF is able to represent temporal variations in the
forecast error covariance. The level of confidence in the model forecast is adjusted according to the ensemble
spread. Time-dependent spatial and cross-variable correlations of the model forecast errors are also estimated
from the model ensemble. For example, if model errors become de-correlated over a given region during a
storm then the observations of that regionwill have less or no impact on the analysis of the surrounding region.
EnKFs allow for the incorporation of nonlinear forward operators and inherently produce an ensemble of
forecasts that can be used to estimate forecast uncertainty. The primary theoretical limitation of EnKFs, as well
as 3D-Var and 4D-Var, is that all errors are assumed to be Gaussian. A number of studies document the relative
capabilities of ensemble Kalman filters and variational methodologies [Lorenc, 2003; Kalnay et al., 2007; Buehner
et al., 2010]. In the EnKF used here, a joint-space localization function is used to reject spurious long-distance
covariances, which arise from limited ensemble size and model deficiencies. The covariance is calculated from
the difference between each ensemble member and the ensemble mean, then tapered off away from the
spatial location of each observation according to the localization function.

Upper atmospheric ensemble data assimilation approaches have been employed by Codrescu et al. [2004],
Matsuo and Araujo-Pradere [2011], Lee et al. [2012], Morozov et al. [2013], and Hsu et al. [2014], while
Scherliess et al. [2009] have applied the ensemble approach to ionospheric data assimilation. Several existing
ionospheric data assimilation efforts estimate neutral parameters (e.g., Global Assimilative Ionospheric Model
(GAIM) by C.Wang et al. [2004], the Global Assimilation of Ionospheric Measurements (GAIM) by Schunk et al.
[2004], and the Estimating Model Parameters from Ionospheric Reanalysis approach by Datta-Barua et al.
[2009]), but these approaches do not treat the thermosphere-ionosphere as a self-consistent, coupled
system. It has not been demonstrated that unobserved parameter estimation can improve ionospheric TEC
forecasts during storms.

1.6. External Drivers

In order to produce an ensemble of model simulations for a strongly forced and dissipative dynamical system
such as the upper atmosphere, it is usually necessary to vary the external driver conditions. Richmond et al.’s
[1992] Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the model used in this
study, by default takes in scalar indices (e.g., Kp and F10.7) to define drivers such as solar flux, the high-latitude
electric field and auroral precipitation. It is possible to produce an ensemble by driving TIEGCMwith a range of
different values of these indices [e.g., Lee et al., 2012] to produce different model realizations. However, the
indices cannot fully characterize disturbed solar and geomagnetic conditions. Lu et al. [2008a, 2008b]
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incorporated far more detailed specifi-
cations of these drivers into TIEGCM
to simulate the geomagnetic storm
that occurred on 10 September 2005.
Their model setup, which is used in
this study, was in good agreement with
measurements of ionospheric electron
densities, temperatures, and vertical
drifts from Arecibo and Millstone Hill.
In their study, the solar flux spectrum
observed by the Solar EUV Experiment
(SEE) on board the Thermosphere
Ionosphere Mesosphere Energetics
and Dynamics (TIMED) satellite is used,
while high-latitude mean energy,
energy flux, cusp latitude, and electric
potential are determined by the
Assimilative Mapping of Ionospheric

Electrodynamics (AMIE) procedure [Richmond, 1992]. The inputs to AMIE include ion drift and particle data from
Defense Meteorological Satellite Program F13, 15, and 16; particle data from National Oceanographic and
Atmospheric Administration satellites 15, 16, and 17; the Super Dual Auroral Network radar data (ten in the
northern hemisphere and two in the southern hemisphere); and from 178 ground magnetometers. The AMIE
technique is an assimilative mapping of these observations onto the convection model of Heelis et al. [1982]
and the conductance model of Fuller-Rowell and Evans [1987]. Convection potentials and auroral mean energy
and energy flux in both hemispheres from AMIE are saved at 5min cadence, and then temporally interpolated
to drive TIEGCM, which is run at a 2min time step.

The goal of this study is to determine the effect of TEC assimilation on the accuracy of short-term storm time
TEC predictions at midlatitudes. TEC observations are assimilated into a thermosphere-ionosphere model
ensemble. One-hour predictions are assessed against observed TEC, electron density profiles from ISRs,
and point electron densities from CHAMP. Performance is compared with co-rotated persistence forecasts,
and the effects of different assimilation settings are assessed.

1.7. Storm Characteristics

For this investigation, the moderate storm of 10 September 2005 is selected to serve as the primary case study.
A second, anomalous storm period (on 22 January 2005) is chosen to test the validity of our conclusions, in
which we perform a separate assimilation experiment. We first discuss the context of the September event,
followed by the January event. None of the indices shown in Figures 1 and 2 are used in the creation of the
ionospheric predictions shown later, although the AMIE values are summaries of the inputs used. Instead, we
use multidimensional specifications of solar flux from the Thermosphere Ionosphere Mesosphere Energetics
and Dynamics (TIMED) satellite’s Solar EUV Experiment (SEE) and two-dimensional high-latitude inputs
from AMIE.

The geomagnetic disturbance index, Kp, solar wind plasma speed and IMF conditions for the September
storm are shown in Figure 1. We define a “local time” (UT—06:00) for the continental USA that is used for
consistency with results presented later, and the timing reported by other authors is likewise converted.

Figure 1 shows that solar wind plasma speed increased and the IMF components became more variable in
the period after 06:00 LT USA on 9 September. A geomagnetic disturbance of Kp=6� occurred in the
06:00–09:00 LT window on 10 September, and the index increased further to 8� between 21:00–24:00 LT
on 10 September. Goncharenko et al. [2007] report that an associated ionospheric storm occurred on
10 September 2005, with strong positive phase effects (e.g., enhanced TEC) beginning after 07:00 LT in
North America. The authors found that a combination of effects were responsible for the increased ionization.
At subauroral and middle latitudes, penetration electric fields acted to increase the plasma density, while a
traveling atmospheric/ionospheric disturbance (TAD/TID) and possibly an increased O/N2 ratio contributed
at middle and lower latitudes.

Figure 1. Geomagnetic index (Kp), AMIE polar cap potential, disturbance
storm time index (Dst), Advanced Composition Explorer plasma speed
and IMF strength, AMIE hemispheric power from 9 to 12 September 2005.
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Lu et al. [2008a] show that a storm-
enhanced density region formed over
North America between 12:00–13:00 LT
on 10 September. The positive storm
phase in North America can be defined
to occur between 09:00–18:00 LT. The
most disturbed period shown here
(19:00 to 23:00 LT on 10 September) coin-
cides with a positive storm phase in the
Pacific sector, where there are relatively
few ionospheric observations available.

Du et al. [2008] report the occurrence of
a major anomalous geomagnetic storm
on 21–22 January 2005. The storm is
considered highly anomalous because
its positive phase coincided with a per-
iod of northward IMF conditions. An
unusually strongmagnetic shock arrived

at Earth at about 11:00 LT on 21 January. The same indices shown in Figure 1 are shown for the January event
in Figure 2.

Du et al. [2008] define the positive phase of this storm as beginning at 13:46 LT on 21 January, and note that
the IMF remains predominantly northward until 19:24 LT. Sahai et al. [2011] studied the ionospheric NmF2,
hmF2, and TEC response to the storm in the Latin American sector. The authors noted a strong TEC enhance-
ment near the equator, with relatively weak enhancements at southern midlatitudes. They observed that the
main phase ended at about 18:00 LT on 22 January, with NmF2 dropping below quiet time levels after that. It is
worth noting that their analysis of the storm phases is based in a different geographical region (South and
Central America) than our study (continental USA). The anomalous nature of this storm makes it an ideal
candidate for testing the robustness of the assimilative predictions presented here.

2. Method
2.1. Driver Perturbations

In order to represent model and external driver uncertainties in the ensemble, we apply random Gaussian
perturbations to the SEE and AMIE specifications. These specifications are given in terms of two-dimensional,
time-varying fields, so their space-time coherence needs to be taken into account. The variability introduced
to the driver specifications is largely heuristic and is described below. Following the approach of Lee et al.
[2012], 90 randomized versions of the drivers are produced to create the 90 members of the TIEGCM
ensemble. Each member is run for 24 h with the randomized drivers to create a set of initial conditions for
the assimilation. After that point, observations are assimilated hourly.

Solar flux uncertainties are represented by an ensemble of solar flux time series. Each of these is derived from
the SEE observations, which are taken about 15 times daily (once per orbit). Eachmember is calculated bymulti-
plying the observed time series by a single random number sampled from a zero-mean normal distribution
with a standard deviation of 10%. The deviations here are completely correlated across wavelengths and in
time. This choice could be seen as representing potential long-term, systematic biases in the instrumentation
or in the modeled interpretation of solar flux. One possible alternative would be to introduce time-varying
randomizations, but we currently have no reason to believe solar flux-related biases vary temporally.

Four AMIE parameters are required to drive TIEGCM: cusp latitude, mean energy, energy flux, and electric poten-
tial. Normal, zero-mean random errors with a standard deviation of 10% are applied to the mean energy and
energy flux fields, while random perturbations with a three-degree standard deviation are applied to the cusp
latitude parameter. The perturbations applied to these fields and parameters are 100% spatially and temporally
correlated, as is the case for the solar flux. The random numbers used are the same for each group of fields, but
different across the two hemispheres. The electric potential presents a special set of problems, because the

Figure 2. Geomagnetic index (Kp), AMIE polar cap potential, disturbance
storm time index (Dst), Advanced Composition Explorer plasma speed,
and IMF strength, AMIE hemispheric power from 20 to 23 January 2005.
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electric field (the gradient of the potential) is the quantity of importance to the model. If an independent
spatiotemporal random noise distribution is applied to the potential, the total electric field strength will be
increased. The aim here is to create an ensemble distributed around the AMIE estimate, evolving spatially and
temporally to account for uncertainties due to varying coverage. A heuristic choice is made to vary the gradient
of the potential at two spatiotemporal scales: one and two thirds degrees and 5min, and also 10° and 30min.
The AMIE electric field is calculated, randomized at the two spatiotemporal scales, and then translated back
to an ensemble of electric potential maps. Each of these variations is sampled from a zero-mean normal
distribution with a standard deviation of 30% of the AMIE electric field. Figure 3 shows an example AMIE electric
potential perturbation. Drift velocities flow along lines of constant potential, in this case antisunward across the
polar cap and returning sunward at lower latitudes.

The solar and geomagnetic drivers are not adjusted by the data assimilation process.

2.2. Specifics of the EnKF Experiments

An ensemble adjustment scheme proposed by Anderson [2001] and implemented in the Data Assimilation
Research Testbed (DART) [Anderson et al., 2009] is used in this experiment. The configuration used here
involves the following steps:

1. An ensemble of TIEGCM initial conditions is produced.
2. Localization of the model error covariance is applied to limit the spatial impact of the observations. A

covariance function (a quasi-Gaussian form) proposed by Gaspari and Cohn [1999] is used for horizontal
localization (on geographic coordinates) around each observation. The localization value is defined as
the half-width of that function. No vertical localization is applied.

3. All ensemble forecast members are updated to form an ensemble of analyses according to the ensemble
adjustment algorithm [Anderson, 2001], and each observation is assimilated sequentially [Anderson, 2003].
Note that the forecast (or “background”) error covariance is calculated from the differences of the ensemble
members to the ensemble mean.

4. Outlier observations are rejected if they fall further than three combined model-observation standard
deviations from the prior ensemble mean prediction.

Figure 3. Electric potential at 12:00 LT (18:00 UT) on 10 September 2005 in the Arctic (midday is on the left). Original AMIE
map in black and five example perturbations in color.
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5. The assimilation window is 1 h.
Observations within 5min of each
time are assimilated. After the
ensemble members are updated,
they are run forward for 1 h using
the predefined external driver con-
ditions specific to each member.

2.3. The EnKF State Vector

Ideally, all the model state variables
(winds, temperatures, composition,
etc.) would be included in the EnKF
state vector so that they could be
modified according to the correlations
between the different state variables
and each observation. In practice,
the modeled covariance exhibits spur-
iously strong correlations between

variables and at large distances. The reasons for this are that the model typically produces overly smooth
representations of reality, the input driver ensemble is flawed, and there are a limited number of samples
in the ensemble. If left unaccounted for, these spurious correlations lead to unjustified modifications of the
model state variables. Spatial localization removes spurious long-distance correlations, but does not affect
spurious local correlations between different variables. These local correlations are dealt with by including
only those variables we believe to be strongly correlated with the observations into the EnKF state vector.
Since we are using vertical TEC observations, it is logical to include electron density and O+ density in the
EnKF state vector. As for the thermospheric state variables, the winds and the O/N2 ratio are included because
of their well-known effects on ionospheric density (e.g., Rishbeth et al. [2000] for composition effects on
F2-layer density, Immel et al. [2001] for O/N2 enhancements during storms, and Lu et al. [2008b] for positive
storm driving by neutral winds). Using TIEGCM, the O/N2 ratio is adjusted by modifying the mixing fraction of
O, because the mixing fraction of N2, referred to here as [N2], is stored implicitly as follows:

N2½ � ¼ 1 – O½ � þ O2½ �ð Þ (1)

where [O] and [O2] are the mass mixing fractions of atomic and molecular oxygen. [O2] is not adjusted in our
scheme. It is clearly desirable to specify thermospheric variables as accurately as possible, but it is not obvious
that we can infer all of them from TEC observations. Experiments are performed with and without thermo-
spheric variables in the EnKF state vector to elucidate any errors introduced by this process.

2.4. Observations

The observations assimilated here are vertical TEC values preprocessed from ground-based GPS slant TEC by
the MIT Haystack Observatory using the method described by Rideout and Coster [2006]. Around 4000 glob-
ally distributed observations are ingested each hour. ISR and CHAMP electron density observations are also
used for model validation. The locations of these observations on 10 September 2005 are shown in Figure 4.

GPS measures TEC from the ground to the altitude of the satellites (around 20,000 km), whereas the top of
TIEGCM extends only to about 600 km, depending on solar irradiance. There is a significant contribution to
GPS TEC from plasma above 600 km, so a forward operator is used that extrapolates the modeled electron
density up five scale heights to around 2500 km, using the assumption of vertical diffusive equilibrium at
the top of the model with a constant plasma temperature. There are several problems with this approach.
The plasma is not always in diffusive equilibrium, the temperature is not constant, the scale height increases
when H+ becomes the dominant ion, and therefore, there is some plasma above our extrapolation. However,
our extrapolation is an improvement over the assumption that there is no plasma above the top of themodel.
The extrapolation process is shown in Figure 5. In the example shown, the extrapolation accounts for 12% of
the total TEC. The extrapolation is moderately sensitive to the plasma temperature at themodel top: doubling
that temperature adds a further 13% to the total TEC.

Figure 4. The locations of data used in this study. Five-minute, 1° averages of
vertical TEC from ground-based GPS at 13:00 LT (19:00 UT) on 10 September
2005. Relevant segments of CHAMPorbit passes shown in red/pink (northward/
southward) with the mean LT of each segment labeled. Millstone Hill and
Arecibo observatory are shown as black and green diamonds.
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The standard deviation of the slant-to-vertical GPS TEC
observations is set to 5 TECU. This includes errors due to
mapping between model and observations. Observations
are rejected when the distance between the observation
and themodel forecast is more than three times the square
root of the sum of the observation andmodel forecast error
variances. In practice, around 1.5% of observations are
rejected. These “bad” observations are not assimilated but
are included in tests of forecast accuracy.

2.5. Experiment Specifics

Assimilative predictions are produced for the January and
September storm periods identified in the introduction. The
continental USA region (defined as 25°–55°N, 75°–130°W) is
chosen for these experiments because it is well covered by
observations (see Figure 4) and because Goncharenko et al.
[2007] identified the importance of plasma density and
winds (as TADs/TIDs) and possibly O/N2 in driving the posi-

tive storm phase in this region. These variables are adjusted by the EnKF, whereas the important high-latitude
driver (penetration electric fields) is not.

The EnKF allows for unobserved variables to be inferred from observations of other variables, so long as
correlations exist between them. Chartier et al. [2013] and Hsu et al. [2014] showed using simulations that
accurate specification of thermospheric composition is particularly important for improving ionospheric
forecast accuracy, while the importance of neutral winds during storms is widely acknowledged [e.g.,
Buonsanto, 1999]. Hsu et al. [2014] inferred thermospheric parameters from radio occultation observations
of electron density in an observing system simulation experiment under geomagnetically quiet conditions.
Here assimilation experiments are performed to determine which model state variables can be adjusted to
improve ionospheric forecasting, using a real storm case and real observations. The model state variables
tested are plasma density, thermospheric composition, and thermospheric winds. The different configura-
tions are as follows:

1. Ionosphere (e�, O+)
2. Ionosphere and composition (e�, O+, O, N2)
3. Ionosphere, composition, and winds (e�, O+, O, N2, U, V)
4. Ionosphere and winds (e�, O+, U, V)

When observations are assimilated, localization is used to limit the spatial impact of the observations. In our
case, joint-space localization is used so as to restrict the covariance to an area defined around each observation
as it is assimilated. The localization radius should be set large enough to include realistic correlations, but small
enough to reject spurious long-distance correlations. Experiments are performed to determine the optimal
localization radius, testing 0.2, 0.5, and 1.0 radians (11.5, 28.6, and 57.3°).

A control run is performed, where no observations are ingested in the model. This run is included to show the
effects of the assimilation process. For comparison, 1 h persistence TEC forecasts are produced by rotating
the TEC observations on constant geomagnetic latitudes.

3. Results
3.1. Model Bias Against the Observations

Before assimilating observations, it is worth considering the accuracy of themodel compared with the observa-
tions. The errors of each ensemblemember from a dry run (or control run) without assimilation are compared to
the TEC observations are shown in Figure 6.

In the lead-up to the storm (up to 07:00 LT), the ensemble has a small positive bias. The positive bias and the
ensemble spread grow in the early part of the storm (07:00–12:00 LT) as TEC values increase. The positive bias
decreases between 12:00 and 15:00 LT, then recovers until 20:00 LT before subsiding as night falls, indicating
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Figure 5. Topside extrapolation of electron density
10 levels up from the top of TIEGCM. Extrapolation
accounts for plasmaspheric contribution to GPS TEC
observations. This profile is from 37.5°N, 100°E,
13:00 LT (19:00 UT) on 10 September 2005.
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that the model has an overall positive
bias but does not fully represent the
positive storm phase. There is a clear
correlation between solar flux bias and
model TEC in the continental USA,
which shows that the solar flux rando-
mization is an important driver of
ensemble spread.

3.2. Validation Against TEC

One-hour ensemble mean predictions
are compared against TEC observations
in Figure 7. The state vector is in config-
uration (c) (ionosphere, winds, and com-
position) and a localization radius of 1.0
radians is used.

The prediction reproduces the general trends of the observations, including TEC enhancement of the positive
phase of the storm at 13:00 and 15:00 LT. However, the predicted TEC enhancement is less intense and does
not extend as far north as what is observed, resulting in an underestimation of up to 12 TECU in the northwes-

tern USA at 13:00 LT. The observed ridge-like enhancement
is not represented in the predictions. Given the similarity of
this ridge feature to the storm-enhanced density plume
observed by Foster et al. [2005] using the same GPS techni-
que, the discrepancymay be caused by the lack of a plasma-
sphere in our model.

3.3. Validation Against Other Observations

So far, we have examined the accuracy of assimilative predic-
tions with respect to verticalized GPS TEC observations. Two
other data sets are used here: in situ electron densities from
a Langmuir probe on CHAMP, which are available during
both periods, and ISR data, which are only available in the
September event. The accuracy of the predicted electron
density altitude profile is assessed against ISR observations
at Millstone Hill and Arecibo in Figure 8. A dry (or control)
run with no assimilation is included for comparison.

The results of Figure 8 show that the model reproduces the
major features seen at Millstone Hill and at Arecibo. The
altitude variations seen at both stations on 10 September
are reproduced accurately. The assimilation is effective in
reducing the positive bias of the dry run, but the F region
electron densities are then underestimated during the posi-
tive storm phase on 10 September, while the reverse is true
on 9 September. The indication is that the model has most
of the physics and accurate initial conditions necessary to
reproduce storm time and quiet time behavior at these
stations, but it is missing a source of plasma at the peak
of the positive phase of the storm. At 16:00 LT at Arecibo
the observed NmF2 is 2.13× 10

12 e/m3, which is 49% higher
than the predicted value of 1.43× 1012 e/m3. The height of
the peak density, hmF2, is predicted at 297 km versus the
observed 330 km, which may indicate that the model is
missing some of the plasma-lifting effects of penetration
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Figure 6. Biases of each dry run ensemble member compared with TEC
observations in the continental USA on 10 September 2005. Ensemble
mean is shown in black. The color scale shows what bias is applied to the
solar flux driving each member.

Figure 7. TEC observations, 1 h ensemble mean pre-
dictions from run (c) and the differences between the
two (prediction-observations) on 10 September 2005.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020799

CHARTIER ET AL. IONOSPHERIC FORECASTING DURING STORMS 772



electric fields and/or equatorward neutral winds, with the result that the plasma recombines too quickly. The
overestimated hmF2 earlier (13:00 LT: 482 km predicted, 367 km observed) may be an indication that one or
both plasma lifting processes acted too early in the model.

CHAMP in situ electron density data are available at 15 s (approximately 120 km) cadence during both periods
(21 January and 10 September 2005). These data were provided by the German Research Centre for Geosciences
(GFZ Potsdam). The model results are linearly interpolated to the times and locations of the CHAMP observa-
tions. Results are shown in Table 1.

The results of the CHAMP comparison show the assimilative prediction corrects most of the electron density
bias of the dry run (18.7% down from 55.4% on 22 January, 6.7% down from 26.7% on 10 September).
However, the assimilation does not correct the RMS error, indicating that the model is still unable to reproduce
the observed variability accurately.

3.4. Comparison With Corotated Predictions

The accuracy of 1 h ensemble mean TEC predictions and persistence forecasts is shown in Figure 9. The anom-
alous storm of January 2005 is included in this comparison. Persistence forecasts are made by corotating obser-
vations on constant geomagnetic latitudes an hour forward in time. The persistence forecasts are compared
against observations within 1° of their new locations. Configuration (c) is again used for the assimilation.

The January storm is more intense than the one in September, so it is logical that prediction errors are much
larger. The dry run is the least accurate in both cases and has large positive biases during the day. The analysis
is most accurate in both cases because it has access to the observations being compared against here. Analysis
RMS error growth in the main phases indicates the inherent weakness of a 5° resolution model in matching 1°
binned observations during disturbed times. The 1h prediction is far more accurate than the dry run, indicating
that TEC assimilation is effective in reducing model errors over short prediction periods, even during storms.
However, the prediction error is still much larger than the analysis, which indicates the need for improved
specification of the model’s magnetospheric and solar drivers.

The persistence forecast is useful as a performance benchmark, although it is possible that it shares a common
bias with the observations. Before the storms, the persistence matches the observations better than the assim-
ilative prediction. The persistence errors increase in the later part of the main phase and the recovery phase,
whereas the assimilative prediction has larger errors in the early part of the main phase and the buildup to
the January storm. In the 10 September recovery phase, the assimilative prediction bias remains above the
baseline, which is not the case in January. The 10 September recovery effect may be caused by the buildup
to the 11 September storm that occurs at about midnight LT.

Figure 8. Comparison of ISR observed electron densities from Arecibo and Millstone Hill with the ensemble mean of the
dry run and 1 h assimilative prediction (c) between 9 and 11 September 2005 (LT).

Table 1. Comparison of Model Runs Against CHAMP In Situ Electron Densities in Continental USA

21 January (Local Time) 10 September (Local Time)

Dry Run 1 h prediction Dry Run 1 h prediction

Bias (%) 55.4 18.7 26.7 6.7
RMS (%) 73.7 71.9 64.3 64.4
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3.5. Effect of State Variables

A state vector including multiple unobserved variables and a large localization radius was used in the previous
experiments. The effects of these choices are analyzed in this and the next section. Experiments are performed
with four combinations of state vector variables (a, b, c, and d as described above). The localization radius is set
to 0.5 radians (28.6°) for these experiments. Figure 10 shows the RMS errors of 1 h predictions from the four runs
against vertical TEC observations.

All state vector configurations have similar performance. The bias seen in the control run (in Figure 6) is seen
again here, indicating the important influence of external (solar and geomagnetic) drivers on the ionosphere
during storms. The ionospheric assimilation (a) is less effective in reducing the positive bias between 06:00
and 12:00 LT. However, the stronger bias corrections introduced by modifying the composition in runs (b)
and (c) have the effect of causing a larger negative bias between 13:00 and 15:00 LT. Run (b) is more similar
to run (c) than runs (a) and (d), indicating that including O/N2 in the state has a stronger effect on model evo-
lution than including the winds, as was reported by Chartier et al. [2013] and Hsu et al. [2014].

3.6. Localization

The localization radius should be set to
the distance within which the ensem-
ble can produce reliable estimates of
the error covariances between state
variables. A perfect ensemble would
function best with an infinite localiza-
tion radius because it would specify
covariances accurately at all distances,
but in practice the ensemble can pro-
duce spurious covariances at long dis-
tances from the observations. Figure
11 shows the effects of different locali-
zation radii on our results.

Before 12:00 LT, there is no appreciable
difference between the three runs,

Figure 9. RMS TEC errors and biases of a 1 h persistence forecast (red), 1 h ensemble mean assimilative prediction (green)
and analysis (dark blue) from configuration (c), and a dry run with no assimilation (light blue). The positive storm phases
shown are defined according to Sahai et al. [2011] for January, and Goncharenko et al. [2007] for September.

Figure 10. RMS TEC errors and biases of four 1 hour predictive assimilation
runs in the continental USA are shown for 10 September 2005. The effect
of including different variables in the state vectors is addressed here.
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perhaps indicating that long-distance cor-
relations are unimportant or unnecessary
in this period. Between 12:00–15:00 LT
the largest localization radius run (c) per-
forms best, but the situation is reversed
after that. This could be an indication that
the ensemble does not properly repre-
sent the variability in the later stages of
the storm.

4. Discussion

Assimilation of TEC observations is
effective in reducing the RMS error and
bias of 1 hour TEC predictions in the
Continental USA during two storm peri-

ods. The related electron density bias is also reduced against CHAMP and ISR data, although the CHAMP
analysis does not show an improvement in RMS error (perhaps due to the limited model resolution).
Before the storms, and during part of the main phase, a persistence forecast is more accurate than the
assimilative prediction, whereas the assimilation is more accurate in the later part of the main phases and
the recovery phase. The improvement against the background shows that TEC assimilation can play an
important role in correcting biases in short-term predictions, but accurate initial conditions alone are not
sufficient to produce accurate predictions. The magnetospheric and solar drivers are important even on short
time scales, so a successful physics-based prediction approach must include either some capacity for predic-
tive estimation of forcing parameters, or use an integrated magnetosphere-ionosphere approach where the
full system can be specified accurately. The thermosphere-ionosphere system exhibits rapid variability during
storms, so it is possible that an assimilation cadence faster than 1 h will also provide some improvement. Such
an approach has to take into account the risk of destabilizing the model through rapid updates.

The results show the effects of including different variables in the state vector. As was shown theoretically by
Chartier et al. [2013] and in an observation system simulation experiment by Hsu et al. [2014], changes to the
thermospheric composition (O/N2 in this case) have more impact on the model prediction than changes to
the winds. This is not to say that neutral composition is more important than winds in driving positive storm
effects. Instead, the result indicates that the composition responds more slowly than the winds to forcing
from other parameters, so its effects are seen to last longer. Since both parameters are known to be important
components of storm time ionospheric behavior, it is clearly desirable to specify them accurately. For compo-
sition, this should be achievable through direct assimilation of observations. The situation is more complex
for winds, because they respond more quickly to external forcings such as high-latitude heating from
precipitation and convection. Morozov et al. [2013] and Matsuo et al. [2013] demonstrated that it is possible
to infer solar and geomagnetic drivers from thermospheric observations using an EnKF. Estimation of solar
and geomagnetic drivers using TEC observations will be addressed in future work.

The analysis RMS error growth seen during the positive phase of the storms indicates that the 5° model
resolution cannot fit the variability seen in 1°-binned observations at these times. The indication is that a
higher-resolution model is required in these periods. This may have serious consequences for ensemble
approaches, where the computing power required by large models can limit the number of ensemble
members used. Currently, the single-threaded TIEGCM configuration runs fast enough that the ensemble size
can be set as large as is deemed useful, given the state-of-the-art high-performance computing facilities
available. Of course, it is desirable to use more complex models that represent all the important regions at
high resolution, such as the magnetosphere and the lower atmosphere, but those models require far more
computing resources with the consequence that smaller ensembles must typically be used. One alternative
is to use single-threaded approaches such as 4D-Var, while another possibility is to pursue nested-grid
approaches in cases where only a regional analysis is required.

In order to generate ensemble predictions of an ionospheric storm, it is necessary to create an ensemble of
external drivers that reflects the real uncertainty in the driver specifications. We did not have access to forecasts

Figure 11. RMS TEC errors and biases of three 1 h predictive assimilation
runs in the continental USA are shown for 10 September 2005. The effect
of different localization radii is addressed here.
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of the drivers used in this study so we added uncertainties to the observed/assimilated values of multidimen-
sional fields such as high-latitude electric potential, particle precipitation and the solar flux spectrum. This
approach allows for small-scale variability to be introduced to otherwise overly smooth external driver specifi-
cations. An alternative would be to use forecasts of simple, one-dimensional indices such as Kp [e.g.,Wing et al.,
2005] and F10.7 [e.g., Henney et al., 2012]. That approach was not chosen for this study because models are
unable to reproduce storms accurately even with measured values of those indices, as was shown by the
Community Coordinated Modeling Center challenge studies [Shim et al., 2011; Emery et al., 2012].

Pre-processed, verticalized TEC observations are used in this experiment. This approach is suboptimal
because the slant-to-vertical translation introduces errors. A more rigorous approach would be to calculate
the modeled values of slant TEC by integrating through the modeled electron density field along a straight
path between satellite and receiver and to assimilate the slant TEC data directly. This approach will remove
much of the observational error, but instrumental biases are still present in GNSS slant TEC observations.
To remove these biases, it would be advantageous to use an algorithm that accommodates time-differenced
phase observations, as has been done by Mitchell and Spencer [2003].

5. Conclusions

Verticalized GPS TEC observations have been assimilated into a coupled thermosphere-ionosphere model.
Model accuracy is improved so that 1 h predictions are more accurate than a 1 h persistence forecast
between 11:00 and 18:00 LT on 10 September 2005 in the continental USA. However the persistence forecast
is more accurate outside the storm period. The results show the potential for ionosphere-thermosphere
assimilation to improve midlatitude storm time TEC forecasting efforts, but also highlight the need for better
models and more accurate forecasts of the external drivers.

This study shows that assimilation of TEC observations can be used to improve storm time predictions of iono-
spheric TEC. The ensemble approach provides both a forecast of the ionosphere and an estimate of forecast
uncertainty. Following the approach ofWang et al. [1999], mesoscale models could be embedded in an ensem-
ble of large-scale forecasts to provide probabilistic predictions of small-scale effects such as scintillation. The
system demonstrated here includes a coupled thermosphere, so it could also form the basis of a satellite drag
forecast system [e.g., Matsuo et al., 2013].
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Erratum

The paper has been modified slightly to acknowledge a grant from NASA's Explorer's Program. This updated
version may be considered the authoritative version of record.
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