102 research outputs found

    Spatio-Temporal Credit Assignment in Neuronal Population Learning

    Get PDF
    In learning from trial and error, animals need to relate behavioral decisions to environmental reinforcement even though it may be difficult to assign credit to a particular decision when outcomes are uncertain or subject to delays. When considering the biophysical basis of learning, the credit-assignment problem is compounded because the behavioral decisions themselves result from the spatio-temporal aggregation of many synaptic releases. We present a model of plasticity induction for reinforcement learning in a population of leaky integrate and fire neurons which is based on a cascade of synaptic memory traces. Each synaptic cascade correlates presynaptic input first with postsynaptic events, next with the behavioral decisions and finally with external reinforcement. For operant conditioning, learning succeeds even when reinforcement is delivered with a delay so large that temporal contiguity between decision and pertinent reward is lost due to intervening decisions which are themselves subject to delayed reinforcement. This shows that the model provides a viable mechanism for temporal credit assignment. Further, learning speeds up with increasing population size, so the plasticity cascade simultaneously addresses the spatial problem of assigning credit to synapses in different population neurons. Simulations on other tasks, such as sequential decision making, serve to contrast the performance of the proposed scheme to that of temporal difference-based learning. We argue that, due to their comparative robustness, synaptic plasticity cascades are attractive basic models of reinforcement learning in the brain

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Functional and Radiologic Outcomes of Degenerative Versus Traumatic Full-Thickness Rotator Cuff Tears Involving the Supraspinatus Tendon.

    Get PDF
    BACKGROUND Arthroscopic rotator cuff repair (ARCR) is among the most commonly performed orthopaedic procedures. Several factors-including age, sex, and tear severity-have been identified as predictors for outcome after repair. The influence of the tear etiology on functional and structural outcome remains controversial. PURPOSE To investigate the influence of tear etiology (degenerative vs traumatic) on functional and structural outcomes in patients with supraspinatus tendon tears. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS Patients undergoing ARCR from 19 centers were prospectively enrolled between June 2020 and November 2021. Full-thickness, nonmassive tears involving the supraspinatus tendon were included. Tears were classified as degenerative (chronic shoulder pain, no history of trauma) or traumatic (acute, traumatic onset, no previous shoulder pain). Range of motion, strength, the Subjective Shoulder Value, the Oxford Shoulder Score (OSS), and the Constant-Murley Score (CMS) were assessed before (baseline) and 6 and 12 months after ARCR. The Subjective Shoulder Value and the OSS were also determined at the 24-month follow-up. Repair integrity after 12 months was documented, as well as additional surgeries up to the 24-month follow-up. Tear groups were compared using mixed models adjusted for potential confounding effects. RESULTS From a cohort of 973 consecutive patients, 421 patients (degenerative tear, n = 230; traumatic tear, n = 191) met the inclusion criteria. The traumatic tear group had lower mean baseline OSS and CMS scores but significantly greater score changes 12 months after ARCR (OSS, 18 [SD, 8]; CMS, 34 [SD,18] vs degenerative: OSS, 15 [SD, 8]; CMS, 22 [SD, 15]) (P < .001) and significantly higher 12-month overall scores (OSS, 44 [SD, 5]; CMS, 79 [SD, 9] vs degenerative: OSS, 42 [SD, 7]; CMS, 76 [SD, 12]) (P≤ .006). At the 24-month follow-up, neither the OSS (degenerative, 44 [SD, 6]; traumatic, 45 [SD, 6]; P = .346) nor the rates of repair failure (degenerative, 14 [6.1%]; traumatic 12 [6.3%]; P = .934) and additional surgeries (7 [3%]; 7 [3.7%]; P = .723) differed between groups. CONCLUSION Patients with degenerative and traumatic full-thickness supraspinatus tendon tears who had ARCR show satisfactory short-term functional results. Although patients with traumatic tears have lower baseline functional scores, they rehabilitate over time and show comparable clinical results 1 year after ARCR. Similarly, degenerative and traumatic rotator cuff tears show comparable structural outcomes, which suggests that degenerated tendons retain healing potential
    corecore