37 research outputs found

    Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe

    Get PDF
    Macroecologists seek to identify drivers of community turnover (β-diversity) through broad spatial scales. However, the influence of local habitat features in driving broad-scale β-diversity patterns remains largely untested, owing to the objective challenges of associating local-scale variables to continental-framed datasets. We examined the relative contribution of local- versus broad-scale drivers of continental β-diversity patterns, using a uniquely suited dataset of cave-dwelling spider communities across Europe (35–70° latitude). Generalized dissimilarity modelling showed that geographical distance, mean annual temperature and size of the karst area in which caves occurred drove most of β-diversity, with differential contributions of each factor according to the level of subterranean specialization. Highly specialized communities were mostly influenced by geographical distance, while less specialized communities were mostly driven by mean annual temperature. Conversely, local-scale habitat features turned out to be meaningless predictors of community change, which emphasizes the idea of caves as the human accessible fraction of the extended network of fissures that more properly represents the elective habitat of the subterranean fauna. To the extent that the effect of local features turned to be inconspicuous, caves emerge as experimental model systems in which to study broad biological patterns without the confounding effect of local habitat features

    Towards evidence-based conservation of subterranean ecosystems

    Get PDF
    Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.Peer reviewe

    The era of reference genomes in conservation genomics

    Get PDF

    An expert-curated global database of online newspaper articles on spiders and spider bites

    Get PDF
    Mass media plays an important role in the construction and circulation of risk perception associated with animals. Widely feared groups such as spiders frequently end up in the spotlight of traditional and social media. We compiled an expert-curated global database on the online newspaper coverage of human-spider encounters over the past ten years (2010-2020). This database includes information about the location of each human-spider encounter reported in the news article and a quantitative characterisation of the content-location, presence of photographs of spiders and bites, number and type of errors, consultation of experts, and a subjective assessment of sensationalism. In total, we collected 5348 unique news articles from 81 countries in 40 languages. The database refers to 211 identified and unidentified spider species and 2644 unique human-spider encounters (1121 bites and 147 as deadly bites). To facilitate data reuse, we explain the main caveats that need to be made when analysing this database and discuss research ideas and questions that can be explored with it.Peer reviewe

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore