36 research outputs found
LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis
Chromosome segregation and genome maintenance require the removal of DNA bridges that link chromosomes just before cells divide. Here the authors show that the LEM-3/Ankle1 nuclease processes DNA bridges before cells divide and define a previously undescribed genome integrity mechanism
Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes
Nessun Dorma is a component of the ring canal with a polysaccharide-binding domain, which is important for cytokinesis during male meiosis
The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly
Polo-Like Kinase 1 Directs Assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF Complex to Initiate Cleavage Furrow Formation
Polo-like kinase 1 promotes assembly of the contractile ring that divides a cell in two by creating a docking site for the RhoA activator Ect2 on the Cyk-4-containing centralspindlin complex at the midzone of the mitotic spindle
Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.Publisher's Versio
Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody
Cytokinesis in animal cells requires the central spindle and midbody, which contain prominent microtubule bundles [1]. Centralspindlin, a heterotetrameric complex consisting of kinesin-6 and RhoGAP (Rho-family GTPase-activating protein) subunits, is essential for the formation of these structures [2]. Centralspindlin becomes precisely localized to the central spindle, where it promotes the equatorial recruitment of important cytokinetic regulators. These include ECT2, the activator of the small GTPase RhoA, which controls cleavage furrow formation and ingression [3], [4], [5] and [6]. Centralspindlin's own RhoGAP domain also contributes to furrow ingression [7], [8], [9] and [10]. Finally, centralspindlin facilitates recruitment of the chromosome passenger complex [7] and [8] and factors that control abscission [11] and [12]. Despite the importance of localized accumulation of centralspindlin, the mechanism by which this motor protein complex suddenly concentrates to the center of interpolar microtubule bundles during anaphase is unclear. Here, we show that centralspindlin travels along central spindle microtubules as higher-order clusters. Clustering of centralspindlin is critical for microtubule bundling and motility along microtubules in vitro and for midbody formation in vivo. These data support a positive feedback loop of centralspindlin clustering and microtubule organization that may underlie its distinctive localization during cytokinesis