96 research outputs found

    Multi-modal analysis of courtship behaviour in the old world leishmaniasis vector Phlebotomus argentipes

    Get PDF
    BACKGROUND: The sand fly Phlebotomus argentipes is arguably the most important vector of leishmaniasis worldwide. As there is no vaccine against the parasites that cause leishmaniasis, disease prevention focuses on control of the insect vector. Understanding reproductive behaviour will be essential to controlling populations of P. argentipes, and developing new strategies for reducing leishmaniasis transmission. Through statistical analysis of male-female interactions, this study provides a detailed description of P. argentipes courtship, and behaviours critical to mating success are highlighted. The potential for a role of cuticular hydrocarbons in P. argentipes courtship is also investigated, by comparing chemicals extracted from the surface of male and female flies. PRINCIPAL FINDINGS: P. argentipes courtship shared many similarities with that of both Phlebotomus papatasi and the New World leishmaniasis vector Lutzomyia longipalpis. Male wing-flapping while approaching the female during courtship predicted mating success, and touching between males and females was a common and frequent occurrence. Both sexes were able to reject a potential partner. Significant differences were found in the profile of chemicals extracted from the surface of males and females. Results of GC analysis indicate that female extracts contained a number of peaks with relatively short retention times not present in males. Extracts from males had higher peaks for chemicals with relatively long retention times. CONCLUSIONS: The importance of male approach flapping suggests that production of audio signals through wing beating, or dispersal of sex pheromones, are important to mating in this species. Frequent touching as a means of communication, and the differences in the chemical profiles extracted from males and females, may also indicate a role for cuticular hydrocarbons in P. argentipes courtship. Comparing characteristics of successful and unsuccessful mates could aid in identifying the modality of signals involved in P. argentipes courtship, and their potential for use in developing new strategies for vector control

    Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aedes aegypti </it>mosquitoes are the main vectors of dengue viruses to humans. Understanding their biology and interactions with the pathogen are prerequisites for development of dengue transmission control strategies. Mosquito salivary glands are organs involved directly in pathogen transmission to vertebrate hosts. Information on the spatial distribution of gene expression in these organs is expected to assist in the development of novel disease control strategies, including those that entail the release of transgenic mosquitoes with impaired vector competence.</p> <p>Results</p> <p>We report here the hybridization <it>in situ </it>patterns of 30 transcripts expressed in the salivary glands of adult <it>Ae. aegypti </it>females. Distinct spatial accumulation patterns were identified. The products of twelve genes are localized exclusively in the proximal-lateral lobes. Among these, three accumulate preferentially in the most anterior portion of the proximal-lateral lobe. This pattern revealed a salivary gland cell type previously undescribed in <it>Ae. aegypti</it>, which was validated by transmission electron microscopy. Five distinct gene products accumulate in the distal-lateral lobes and another five localize in the medial lobe. Seven transcripts are found in the distal-lateral and medial lobes. The transcriptional product of one gene accumulates in proximal- and distal-lateral lobes. Seven genes analyzed by quantitative PCR are expressed constitutively. The most abundant salivary gland transcripts are those localized within the proximal-lateral lobes, while previous work has shown that the distal-lateral lobes are the most active in protein synthesis. This incongruity suggests a role for translational regulation in mosquito saliva production.</p> <p>Conclusions</p> <p>Transgenic mosquitoes with reduced vector competence have been proposed as tools for the control of dengue virus transmission. Expression of anti-dengue effector molecules in the distal-lateral lobes of <it>Ae. aegypti </it>salivary glands has been shown to reduce prevalence and mean intensities of viral infection. We anticipate greater efficiency of viral suppression if effector genes are expressed in all lobes of the salivary glands. Based on our data, a minimum of two promoters is necessary to drive the expression of one or more anti-dengue genes in all cells of the female salivary glands.</p

    Prevenção domiciliar da dengue: avaliação preliminar de tela protetora para pratos de vasos de planta

    Get PDF
    Avaliou-se em laboratório a eficácia de um protótipo de capa de tela de poliéster (evidengue®) destinada a vedar o acesso de fêmeas do mosquito Aedes aegypti a pratos de vasos de planta. Dois pratos de vasos com água foram envolvidos individualmente com a capa e colocados com os seus respectivos vasos em duas gaiolas entomológicas, um em cada gaiola. Numa terceira gaiola foi colocado um conjunto idêntico de prato e vasos sem a capa. Cada gaiola recebeu 20 fêmeas copuladas do mosquito, alimentadas com sangue de camundongo. Os resultados mostram que a capa foi eficaz como barreira ao acesso de fêmeas. Novos testes são necessários para se avaliar a eficácia da capa como dispositivo de prevenção da ovipostura nos pratos.The effectiveness of a polyester mesh cover (evidengue®), aimed at preventing the access of female Aedes aegypti mosquitoes to flowerpot saucers, was evaluated in laboratory. Two saucers of flowerpot with water were individually wrapped with the cover was placed with their respective pots in two entomological cages. One identical set of flowerpot and saucer was placed in a third cage. In each cage, 20 gravid females, fed on mouse blood, were released. Results show that the cover was effective to prevent access of females. Further tests are necessary to assess cover effectiveness as a device to prevent saucer oviposition.Se evaluó en laboratorio la eficiencia de una cubierta de tela de polyester (evidengue®) con el objetivo de vedar el acceso de hembras del mosquito Aedes aegypti a platos de macetas de planta. Fueron utilizadas tres jaulas entomológicas, dos de ellas con evidengue® y una para control. En cada jaula fueron colocados dos conjuntos de macetas de planta y platos y 20 hembras copuladas, alimentadas con sangre de ratón. Los resultados muestran que la cubierta fue eficaz como barrera al acceso de hembras. Nuevas pruebas son necesarias para evaluar la eficiencia de la cubierta como dispositivo de prevención de la oviposición en los platos

    Do climate changes alter the distribution and transmission of malaria? Evidence assessment and recommendations for future studies

    Get PDF
    Malaria, a mosquito-borne infectious disease, is considered a significant global health burden. Climate changes or different weather conditions may impact infectious diseases, specifically those transmitted by insect vectors and contaminated water. Based on the current predictions for climate change associated with the increase in carbon dioxide concentrations in the atmosphere and the increase in atmospheric temperature, the Intergovernmental Panel on Climate Change predicts that in 2050, malaria may threaten some previously unexposed areas worldwide and cause a 50% higher probability of malaria cases. Climatebased distribution models of malaria depict an increase in the geographic distribution of the disease as global environmental temperatures and conditions worsen. Researchers have studied the influence of changes in climate on the prevalence of malaria using different mathematical models that consider different variables and predict the conditions for malaria distribution. In this context, we conducted a mini-review to elucidate the important aspects described in the literature on the influence of climate change in the distribution and transmission of malaria. It is important to develop possible risk management strategies and enhance the surveillance system enhanced even in currently malaria-free areas predicted to experience malaria in the future. © 2019, Sociedade Brasileira de Medicina Tropical. All rights reserved

    Anopheles darlingi polytene chromosomes: Revised maps including newly described inversions and evidence for population structure in Manaus

    Get PDF
    Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies. © Instituto Oswaldo Cruz - Fundação Oswaldo Cruz - Ministério da Saúde 2016

    Vertical Transmission of Zika Virus (Flaviviridae, Flavivirus) in Amazonian Aedes aegypti (Diptera: Culicidae) delays egg hatching and larval development of progeny.

    Get PDF
    Zika virus (ZIKV) has emerged as a globally important arbovirus and has been reported from all states of Brazil. The virus is primarily transmitted to humans through the bite of an infective Aedes aegypti (Linnaeus, 1762) or Aedes albopictus (Skuse, 1895). However, it is important to know if ZIKV transmission also occurs from Ae. aegypti through infected eggs to her offspring. Therefore, a ZIKV and dengue virus (DENV) free colony was established from eggs collected in Manaus and maintained until the third?fourth generation in order to conduct ZIKV vertical transmission (VT) experiments which used an infectious bloodmeal as the route of virus exposure. The eggs from ZIKV-infected females were allowed to hatch. The resulting F1 progeny (larvae, pupae, and adults) were quantitative polymerase chain reaction (qPCR) assayed for ZIKV. The viability of ZIKV vertically transmitted to F1 progeny was evaluated by cultivation in C6/36 cells. The effects of ZIKV on immature development of Ae. aegypti was assessed and compared with noninfected mosquitoes. Amazonian Ae. Aegypti were highly susceptible to ZIKV infection (96.7%), and viable virus passed to their progeny via VT. Moreover, eggs from the ZIKV-infected mosquitoes had a significantly lower hatch rate and the slowest hatching. In addition, the larval development period was slower when compared to noninfected, control mosquitoes. This is the first study to illustrate VT initiated by oral infection of the parental population by using mosquitoes, which originated from the field and a ZIKV strain that is naturally circulating in-country. Additionally, this study suggests that ZIKV present in the Ae. aegypti can modify the mosquito life cycle. The data reported here suggest that VT of ZIKV to progeny from naturally infected females may have a critical epidemiological role in the dissemination and maintenance of the virus circulating in the vector

    Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, lutzomyia longipalpis, for up to 12 weeks in Brazil

    Get PDF
    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases

    The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

    Get PDF
    BBSRC Grant (BB/K005448/1)Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail?s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail?s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species? genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategiespublishersversionPeer reviewe

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts
    corecore