84 research outputs found

    Funerary practices in megalithic tombs during the Argaric Bronze Age in South-Eastern Iberia: the cemetery of Los Eriales

    Get PDF
    The transition between the Copper Age and the Argaric Bronze Age in south-eastern Iberia has traditionally been understood in an evolutionary framework that would have involved the replacement of some cultural forms by others. The chronology of megalithic societies has changed this assumption, revealing that the continuity of ancestral funerary practices is also a key feature of the Bronze Age. In this context, the new radiocarbon series from Los Eriales discussed in this paper can be considered a key contribution. Three main aspects stand out according to their statistical analysis: i) Los Eriales should be considered the most recent Iberian megalithic cemetery, as ritual activity began in the last centuries of the third millennium cal BC; ii) funerary activity took place during short events of intensive ritual depositions spanning a few decades, mainly in the 21st and 18th centuries; and iii) Los Eriales cemetery was mainly used during the Argaric period, which means the coexistence of two very different funerary practices: collective megalithic rituals and individual intramural inhumations. The continuity of megalithic rituals can be explained in terms of resilience to the social fragmentation that characterised Argaric societies.Funding for open access charge: Universidad de Málaga / CBUA. This research was supported by the FEDER programme–University of Granada (A-HUM-123-UGR18 and B-HUM-174-UGR20), the Regional Government of Andalusia (P18-FR-4123), and the Spanish Ministry of Science and Innovation (PID2020-114282GB-I00)

    Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products

    Get PDF
    Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural productsThis work was supported by the Junta de Andalucía [BIO-199, P09-CVI- 5367], the VI Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008-2011, Instituto de Salud Carlos III-Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET FIS Network: RD12/0018/0017),the Plan Nacional (SAF2013-48999-R), the FEDER funds from the EU and the PARAMET network (FP7-PEOPLE-2011-ITN. GA290080) to DG-P. Research of FV and OG was supported by the Instituto de Salud Carlos III-Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET FIS Network: RD12/0018/0005) and the FEDER funds from the EU and the PARAMET network (FP7-PEOPLE-2011-ITN. GA290080). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Gender-Based Differences by Age Range in Patients Hospitalized with COVID-19: A Spanish Observational Cohort Study

    Get PDF
    There is some evidence that male gender could have a negative impact on the prognosis and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aim of the present study was to compare the characteristics of coronavirus disease 2019 (COVID-19) between hospitalized men and women with confirmed SARS-CoV-2 infection. This multicenter, retrospective, observational study is based on the SEMI-COVID-19 Registry. We analyzed the differences between men and women for a wide variety of demographic, clinical, and treatment variables, and the sex distribution of the reported COVID-19 deaths, as well as intensive care unit (ICU) admission by age subgroups. This work analyzed 12,063 patients (56.8% men). The women in our study were older than the men, on average (67.9 vs. 65.7 years; p < 001). Bilateral condensation was more frequent among men than women (31.8% vs. 29.9%; p = 0.007). The men needed non-invasive and invasive mechanical ventilation more frequently (5.6% vs. 3.6%, p < 0.001, and 7.9% vs. 4.8%, p < 0.001, respectively). The most prevalent complication was acute respiratory distress syndrome, with severe cases in 19.9% of men (p < 0.001). In men, intensive care unit admission was more frequent (10% vs. 6.1%; p < 0.001) and the mortality rate was higher (23.1% vs. 18.9%; p < 0.001). Regarding mortality, the differences by gender were statistically significant in the age groups from 55 years to 89 years of age. A multivariate analysis showed that female sex was significantly and independently associated with a lower risk of mortality in our study. Male sex appears to be related to worse progress in COVID-19 patients and is an independent prognostic factor for mortality. In order to fully understand its prognostic impact, other factors associated with sex must be considered

    β-Cyclodextrins as affordable antivirals to treat coronavirus infection

    Get PDF
    The SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors. Next, we tested their efficacy as antivirals against α and β coronaviruses, such as the HCoV-229E and SARS-CoV-2 variants. Four drugs, OSW-1, U18666A, hydroxypropyl-β-cyclodextrin (HβCD) and phytol, showed in vitro antiviral activity against HCoV-229E and SARS-CoV-2. The mechanism of action of these compounds was studied by transmission electron microscopy and by fusion assays measuring SARS-CoV-2 pseudoviral entry into target cells. Entry was inhibited by HβCD and U18666A, yet only HβCD inhibited SARS-CoV-2 replication in the pulmonary Calu-3 cells. Compared to the other cyclodextrins, β-cyclodextrins were the most potent inhibitors, which interfered with viral fusion via cholesterol depletion. β-cyclodextrins also prevented infection in a human nasal epithelium model ex vivo and had a prophylactic effect in the nasal epithelium of hamsters in vivo. All accumulated data point to β-cyclodextrins as promising broad-spectrum antivirals against different SARS-CoV-2 variants and distant alphacoronaviruses. Given the wide use of β-cyclodextrins for drug encapsulation and their high safety profile in humans, our results support their clinical testing as prophylactic antivirals

    Validation of Plasmodium falciparum dUTPase as the target of 5'-tritylated deoxyuridine analogues with anti-malarial activity

    Get PDF
    BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS:Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages

    EstuPlan: Methodology for the development of creativity in the resolution of scientific and social problems

    Full text link
    [EN] Creative thinking is necessary to generate novel ideas and solve problems. "EstuPlan" is a methodology in which knowledge and creativity converge for the resolution of scientific problems with social projection. It is a training programme that integrates teachers, laboratory technicians and PhD students, master and undergraduate students which form working groups for the development of projects. Projects have a broad and essential scope and projection in terms of environmental problems, sustainable use of natural resources, food, health, biotechnology or biomedicine. The results show the success of this significant learning methodology using tools to develop creativity in responding to scientific and social demand for problem-solving to transfer academic knowledge to different professional environments. Bioplastics, Second Life of Coffee, LimBio, Algae oils, Ecomers, Caring for the life of your crop and Hate to Deforestate are currently being developed.Astudillo Calderón, S.; De Díez De La Torre, L.; García Companys, M.; Ortega Pérez, N.; Rodríguez Martínez, V.; Alzahrani, S.; Alonso Valenzuela, R.... (2019). EstuPlan: Methodology for the development of creativity in the resolution of scientific and social problems. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 711-717. https://doi.org/10.4995/HEAD19.2019.9205OCS71171
    corecore