30 research outputs found

    Access to a diverse array of bridged benzo[1,5]oxazocine and benzo[1,4]diazepine structures

    Get PDF
    The preparation of bridged benzo[1,5]oxazocines and benzo[1,4]diazepines is demonstrated from simple aniline and aldehyde starting materials. A one-pot condensation/6Ï€ electrocyclization is followed by an intramolecular trapping of the 2,3-dihydroquinoline intermediate by nitrogen or oxygen nucleophiles to give bridged seven- and eight-membered products. Using 3-hydroxypyridinecarboxaldehydes results in a stable zwitterionic structure that can undergo a diastereoselective reduction under hydrogenative conditions. A similar cyclization/hydrogenation pathway with excellent diastereoselectivity is also demonstrated from 2-pyridyl-substituted 1,2,3,4-tetrahydroquinolines.PostprintPeer reviewe

    4-Ï€-Photocyclization of 1,2-Dihydropyridazines: An Approach to Bicyclic 1,2-Diazetidines with Rich Synthetic Potential.

    Get PDF
    The 4-Ï€-photocyclization of a range of 1,2-dihydropyridazines is described, generating bicyclic 1,2-diazetidines in high yields on multigram scale. The key bicyclic 1,2-diazetidines are versatile synthetic intermediates and were easily converted into a range of novel derivatives, including functionalized 1,2-diazetidines, cyclobutenes, cyclobutanes, and 1,3-dienes

    N1-arylation of 1,4-benzodiazepine-2-ones with diaryliodonium salts

    Get PDF
    A library of N1-arylated 5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-ones has been synthesized starting with unsymmetrical diaryliodonium salts using aqueous ammonia as a base. This can also be applied to a similar 1,3,4-benzotriazepin-2-one derivative

    Gram scale laboratory synthesis of TC AC 28, a high affinity BET bromodomain ligand

    Get PDF
    TC AC 28, 6-(1H-Indol-4-yl)-8-methoxy-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine-4-acetic acid methyl ester, has been synthesized on a near gram scale in seven steps with notable improvements in the reported poor yielding last 2 steps enabling this key chemical probe compound to be available for researchers

    A directed enolization strategy enables by-product-free construction of contiguous stereocentres en route to complex amino acids.

    Get PDF
    Homochiral α-amino acids are widely used in pharmaceutical design as key subunits in chiral catalyst synthesis or as building blocks in synthetic biology. Many synthetic methods have been developed to access rare or unnatural variants by controlling the installation of the α-stereocentre. By contrast, and despite their importance, α-amino acids possessing β-stereocentres are much harder to synthesize. Here we demonstrate an iridium-catalysed protocol that allows the direct upconversion of simple alkenes and glycine derivatives to give β-substituted α-amino acids with exceptional levels of regio- and stereocontrol. Our method exploits the native directing ability of a glycine-derived N-H unit to facilitate Ir-catalysed enolization of the adjacent carbonyl. The resulting stereodefined enolate cross-couples with a styrene or α-olefin to install two contiguous stereocentres. The process offers very high levels of regio- and stereocontrol and occurs with complete atom economy. In broader terms, our reaction design offers a unique directing-group-controlled strategy for the direct stereocontrolled α-alkylation of carbonyl compounds, and provides a powerful approach for the synthesis of challenging contiguous stereocentres

    Atom and step economical synthesis of acyclic quaternary centers via iridium-catalyzed hydroarylative cross-coupling of 1,1-disubstituted alkenes

    Get PDF
    Quaternary benzylic centers are accessed with high atom and step economy by Ir-catalyzed alkene hydroarylation. These studies provide unique examples of the use of non-polarized 1,1-disubstituted alkenes in branch selective Murai-type hydro(hetero)arylations. Detailed mechanistic studies have been undertaken, and these indicate that the first irreversible step is the demanding alkene carbometallation process. Structure-reactivity studies show that the efficiency of this is critically dependent on key structural features of the ligand. Computational studies have been undertaken to rationalize this experimental data, showing how more sterically demanding ligands reduce the reaction barrier via predistortion of the reacting intermediate. The key insight disclosed here will underpin the ongoing development of increasingly sophisticated branch selective Murai hydroarylations

    Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers

    Get PDF
    Irinotecan is used clinically for the treatment of colorectal cancer; however, its utility is limited by its narrow therapeutic index. We describe the use of a generation 5 l-lysine dendrimer that has been part-modified with a polyoxazoline as a drug delivery vehicle for improving the therapeutic index of SN-38, the active metabolite of irinotecan. By conjugating SN-38 to the dendrimer via different linker technologies we sought to vary the release rate of the drug to generate diverse pharmacokinetic profiles. Three conjugates with plasma release half-lives of 2.5 h, 21 h, and 72 h were tested for efficacy and toxicity using a mouse SW620 xenograft model. In this model, the linker with a plasma release half-life of 21 h achieved sustained SN-38 exposure in blood, above the target concentration. Control over the release rate of the drug from the linker, combined with prolonged circulation of the dendrimer, enabled administration of an efficacious dose of SN-38, achieving significant regression of the SW620 tumours. The conjugates with 2.5 and 72 h release half-lives did not achieve an anti-tumour effect. Intraperitoneal dosing of the clinically used prodrug irinotecan produces high initial and local concentrations of SN-38, which are associated with gastrointestinal toxicity. Administration of the 21 h release dendrimer conjugate did not produce a high initial Cmax of SN-38. Consequently, a marked reduction in gastrointestinal toxicity was observed relative to irinotecan treatment. Additional studies investigating the dose concentrations and dose scheduling showed that a weekly dosing schedule of 4 mg SN-38/kg was the most efficacious regimen. After 4 doses at weekly intervals, the survival period of the mice extended beyond 70 days following the final dose. These extensive studies have allowed us to identify a linker, dose and dosing regimen for SN-38 conjugated to polyoxazoline-modified dendrimer that maximised efficacy and minimised adverse side effects

    An efficient preparation of 1,2-dihydropyridazines through a Diels-Alder/palladium-catalysed elimination sequence

    Get PDF
    © 2019 Elsevier Ltd A convenient, scalable synthesis of 1,2-dihydropyridazines is presented, based on the Diels-Alder cycloaddition of 1-acetoxy-1,3-butadiene with a variety of azo compounds, followed by a palladium-catalysed elimination. The products are produced on multigram scale and the new method is particularly efficient and atom-economical when compared with previous preparations of 1,2-dihydropyridazines

    CCDC 2277416: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
    corecore