12 research outputs found

    Status of the Los Alamos Room Temperature Neutorn Electric Dipole Moment Search

    Get PDF
    A discovery of the neutron\u27s permanent electric dipole moment larger than the standard model prediction of dn ≈ 10-31 e·cm would signal a new source of CP-violation and help explain the matter-antimatter asymmetry in the universe. Tightening the limits on dn constrain extensions to the standard model in a complementary fashion to the atomic and electron EDM searches. The recent upgrade of the Los Alamos ultracold neutron source makes it possible for a new room temperature search with the statistical reach to improve upon current limits by a factor of 10 or more. During the 2018 LANSCE cycle a prototype apparatus was used to demonstrate the capability to transport and manipulate polarized neutrons and perform Ramsey and Rabi sequence measurements. I will report on the measurements made over the last year, efforts underway to upgrade the prototype chamber, and possible future upgrades of the ultracold neutron source

    Fundamental Neutron Physics at Spallation Sources

    Get PDF
    Low-energy neutrons have been a useful probe in fundamental physics studies for more than 70 years. With advances in accelerator technology, many new sources are spallation based. These new, high-flux facilities are becoming the sites for many next-generation fundamental neutron physics experiments. In this review, we present an overview of the sources and the current and upcoming fundamental neutron physics programs

    Monte Carlo of Trapped Ultracold Neutrons in the UCNτ Trap

    Get PDF
    In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth’s gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be described by Hamiltonian mechanics—do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCNτ magneto-gravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase space evolution of neutrons observed in the UCNτ experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    Get PDF
    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits

    UCNτ : Status and Implications of Current Results

    No full text

    UCNτ : A Magneto-Gravitational Trap for Measuring the Neutron Lifetime

    No full text

    Fundamental Neutron Physics at Spallation Sources

    No full text
    Low-energy neutrons have been a useful probe in fundamental physics studies for more than 70 years. With advances in accelerator technology, many new sources are spallation based. These new, high-flux facilities are becoming the sites for many next-generation fundamental neutron physics experiments. In this review, we present an overview of the sources and the current and upcoming fundamental neutron physics programs
    corecore