31 research outputs found

    Hairiness: the missing link between pollinators and pollination

    Get PDF
    Background. Functional traits are the primary biotic component driving organism influence on ecosystem functions; in consequence, traits are widely used in ecological research. However, most animal trait-based studies use easy-to-measure characteristics of species that are at best only weakly associated with functions. Animal-mediated pollination is a key ecosystem function and is likely to be influenced by pollinator traits, but to date no one has identified functional traits that are simple to measure and have good predictive power. Methods. Here, we show that a simple, easy to measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel image analysis method to calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the power of our method for predicting pollinator effectiveness by regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used linear models and AICC model selection to determine which body regions were the best predictors of SVD and pollen load. Results. We found that hairiness can be used as a robust proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa and Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 D0:98 and 0.91 respectively). The best model for predicting pollen load for B. rapa was hairiness on the face (R2 D0:81). Discussion. We suggest that the match between pollinator body region hairiness and plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We show that pollinator hairiness is strongly linked to pollination an important ecosystem function, and provide a rigorous and time-efficient method for measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem processes is critical as global change increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.University of Auckland PCIG14-GA- 2013-631653, MBIE C11X130

    A horizon scan of future threats and opportunities for pollinators and pollination

    Get PDF
    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations

    Combined impact of healthy lifestyle factors on risk of asthma, rhinoconjunctivitis and eczema in school children: ISAAC phase III

    Get PDF
    Background Asthma is not the key focus of prevention strategies. A Healthy Lifestyle Index (HLI) was developed to examine the combined effect of modifiable lifestyle factors on asthma, rhinoconjunctivitis and eczema using data from the International Study of Asthma and Allergies in Childhood (ISAAC) phase III. Methods Information on symptoms of asthma, rhinoconjunctivitis, eczema and several lifestyle factors was obtained from children aged 6-7 years through written questionnaires. The HLI combined five lifestyle factors: no parental smoking, child's adherence to Mediterranean diet, child's healthy body mass index, high physical activity and non-sedentary behaviour. The association between the HLI and risk of asthma, rhinoconjunctivitis and eczema was evaluated using multilevel mixed-effects logistic regression models. Findings Data of 70 795 children from 37 centres in 19 countries were analysed. Each additional healthy lifestyle factor was associated with a reduced risk of current wheeze (OR 0.87, 95% CI 0.84 to 0.89), asthma ever (OR 0.89, 95% CI 0.87 to 0.92), current symptoms of rhinoconjunctivitis (OR 0.95, 95% CI 0.92 to 0.97) and current symptoms of eczema (OR 0.92, 95% CI 0.92 to 0.98). Theoretically, if associations were causal, a combination of four or five healthy lifestyle factors would result into a reduction up to 16% of asthma cases (ranging from 2.7% to 26.3 % according to region of the world). Conclusions These findings should be interpreted with caution given the limitations to infer causality from cross-sectional observational data. Efficacy of interventions to improve multiple modifiable lifestyle factors to reduce the burden asthma and allergy in childhood should be assessed

    Data from: Exotic flies maintain pollination services as native pollinators decline with agricultural expansion

    No full text
    1.Globally, conversion of natural habitat to agricultural land is a primary driver of declines in critical ecosystem services, including pollination. However, exotic species are often well-adapted to human-modified environments and could compensate for ecosystem services that are lost when native species decline. 2.We measured pollination services (pollen delivery to stigma) provided by wild insects to a mass flowering crop, pak choi Brassica rapa at 12 sites across a gradient of increasing agricultural land use (agricultural expansion) in New Zealand. 3.We found that pollination services increased as the proportion of agricultural land in the surrounding landscape increased; pollination from exotic species exceeded the loss of pollination from native species. However, pollination service delivery became increasingly dominated by a few exotic fly species that were active throughout the day, compared to native species, which had more constrained activity patterns. 4.Synthesis and applications. The best way to ensure continued sufficient crop pollination is to protect and restore diverse natural habitats on or around farms, as species-rich pollinator communities are relatively resilient to further environmental change. However, we show that where human-driven disturbance has caused loss of native pollinator species, exotic pollinators can maintain sufficient pollination. Therefore, in areas where native species loss cannot easily be reversed, decisions about pesticide use and habitat provision that foster populations of beneficial exotic species are likely to maintain pollination service delivery, at least in the short term. This highlights the need for land managers to identify the pollinator communities that are present on their farms, whether native or exotic, and make decisions to support these important communities accordingly

    Exotic species enhance response diversity to land-use change but modify functional composition

    No full text
    Two main mechanisms may buffer ecosystem functions despite biodiversity loss. First, multiple species could share similar ecological roles, thus providing functional redundancy. Second, species may respond differently to environmental change (response diversity). However, ecosystem function would be best protected when functionally redundant species also show response diversity. This linkage has not been studied directly, so we investigated whether native and exotic pollinator species with similar traits (functional redundancy) differed in abundance (response diversity) across an agricultural intensification gradient. Exotic pollinator species contributed most positive responses, which partially stabilized overall abundance of the pollinator community. However, although some functionally redundant species exhibited response diversity, this was not consistent across functional groups and aggregate abundances within each functional group were rarely stabilized. This shows functional redundancy and response diversity do not always operate in concert. Hence, despite exotic species becoming increasingly dominant in human-modified systems, they cannot replace the functional composition of native species.This research was supported by the University of Auckland, BeeFun project PCIG14-GA-2013-631653 and MBIE C11X1309 Bee Minus to Bee Plus and Beyond: Higher Yields From Smarter, Growth-focused Pollination Systems

    Species abundances per site

    No full text
    This data file contains abundances for all pollinator species at each sampling site used in response diversity analyses
    corecore