178 research outputs found

    Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies

    Get PDF
    Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable

    Machine learning using digitized herbarium specimens to advance phenological research

    Get PDF
    Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth

    Cold season emissions dominate the Arctic tundra methane budget

    Get PDF
    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for >= 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 degrees C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 +/- 5 (95% confidence interval) Tg CH4 y(-1), similar to 25% of global emissions from extratropical wetlands, or similar to 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.Peer reviewe

    Which patients with metastatic hormone-sensitive prostate cancer benefit from docetaxel: a systematic review and meta-analysis of individual participant data from randomised trials

    Get PDF
    BACKGROUND: Adding docetaxel to androgen deprivation therapy (ADT) improves survival in patients with metastatic, hormone-sensitive prostate cancer, but uncertainty remains about who benefits most. We therefore aimed to obtain up-to-date estimates of the overall effects of docetaxel and to assess whether these effects varied according to prespecified characteristics of the patients or their tumours. METHODS: The STOPCAP M1 collaboration conducted a systematic review and meta-analysis of individual participant data. We searched MEDLINE (from database inception to March 31, 2022), Embase (from database inception to March 31, 2022), the Cochrane Central Register of Controlled Trials (from database inception to March 31, 2022), proceedings of relevant conferences (from Jan 1, 1990, to Dec 31, 2022), and ClinicalTrials.gov (from database inception to March 28, 2023) to identify eligible randomised trials that assessed docetaxel plus ADT compared with ADT alone in patients with metastatic, hormone-sensitive prostate cancer. Detailed and updated individual participant data were requested directly from study investigators or through relevant repositories. The primary outcome was overall survival. Secondary outcomes were progression-free survival and failure-free survival. Overall pooled effects were estimated using an adjusted, intention-to-treat, two-stage, fixed-effect meta-analysis, with one-stage and random-effects sensitivity analyses. Missing covariate values were imputed. Differences in effect by participant characteristics were estimated using adjusted two-stage, fixed-effect meta-analysis of within-trial interactions on the basis of progression-free survival to maximise power. Identified effect modifiers were also assessed on the basis of overall survival. To explore multiple subgroup interactions and derive subgroup-specific absolute treatment effects we used one-stage flexible parametric modelling and regression standardisation. We assessed the risk of bias using the Cochrane Risk of Bias 2 tool. This study is registered with PROSPERO, CRD42019140591. FINDINGS: We obtained individual participant data from 2261 patients (98% of those randomised) from three eligible trials (GETUG-AFU15, CHAARTED, and STAMPEDE trials), with a median follow-up of 72 months (IQR 55-85). Individual participant data were not obtained from two additional small trials. Based on all included trials and patients, there were clear benefits of docetaxel on overall survival (hazard ratio [HR] 0·79, 95% CI 0·70 to 0·88; p<0·0001), progression-free survival (0·70, 0·63 to 0·77; p<0·0001), and failure-free survival (0·64, 0·58 to 0·71; p<0·0001), representing 5-year absolute improvements of around 9-11%. The overall risk of bias was assessed to be low, and there was no strong evidence of differences in effect between trials for all three main outcomes. The relative effect of docetaxel on progression-free survival appeared to be greater with increasing clinical T stage (pinteraction=0·0019), higher volume of metastases (pinteraction=0·020), and, to a lesser extent, synchronous diagnosis of metastatic disease (pinteraction=0·077). Taking into account the other interactions, the effect of docetaxel was independently modified by volume and clinical T stage, but not timing. There was no strong evidence that docetaxel improved absolute effects at 5 years for patients with low-volume, metachronous disease (-1%, 95% CI -15 to 12, for progression-free survival; 0%, -10 to 12, for overall survival). The largest absolute improvement at 5 years was observed for those with high-volume, clinical T stage 4 disease (27%, 95% CI 17 to 37, for progression-free survival; 35%, 24 to 47, for overall survival). INTERPRETATION: The addition of docetaxel to hormone therapy is best suited to patients with poorer prognosis for metastatic, hormone-sensitive prostate cancer based on a high volume of disease and potentially the bulkiness of the primary tumour. There is no evidence of meaningful benefit for patients with metachronous, low-volume disease who should therefore be managed differently. These results will better characterise patients most and, importantly, least likely to gain benefit from docetaxel, potentially changing international practice, guiding clinical decision making, better informing treatment policy, and improving patient outcomes. FUNDING: UK Medical Research Council and Prostate Cancer UK

    Validation and test-retest repeatability performance of parametric methods for [11C]UCB-J PET

    Get PDF
    [(11)C]UCB-J is a PET radioligand that binds to the presynaptic vesicle glycoprotein 2A. Therefore, [(11)C]UCB-J PET may serve as an in vivo marker of synaptic integrity. The main objective of this study was to evaluate the quantitative accuracy and the 28-day test–retest repeatability (TRT) of various parametric quantitative methods for dynamic [(11)C]UCB-J studies in Alzheimer’s disease (AD) patients and healthy controls (HC). Eight HCs and seven AD patients underwent two 60-min dynamic [(11)C]UCB-J PET scans with arterial sampling over a 28-day interval. Several plasma-input based and reference-region based parametric methods were used to generate parametric images using metabolite corrected plasma activity as input function or white matter semi-ovale as reference region. Different parametric outcomes were compared regionally with corresponding non-linear regression (NLR) estimates. Furthermore, the 28-day TRT was assessed for all parametric methods. Spectral analysis (SA) and Logan graphical analysis showed high correlations with NLR estimates. Receptor parametric mapping (RPM) and simplified reference tissue model 2 (SRTM2) BP(ND), and reference Logan (RLogan) distribution volume ratio (DVR) regional estimates correlated well with plasma-input derived DVR and SRTM BP(ND). Among the multilinear reference tissue model (MRTM) methods, MRTM1 had the best correspondence with DVR and SRTM BP(ND). Among the parametric methods evaluated, spectral analysis (SA) and SRTM2 were the best plasma-input and reference tissue methods, respectively, to obtain quantitatively accurate and repeatable parametric images for dynamic [(11)C]UCB-J PET. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-021-00874-8

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore