19 research outputs found

    Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Get PDF
    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine

    Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates

    Get PDF
    Background: Human embryonic stem cells (hESC) should enable novel insights into early human development and provide a renewable source of cells for regenerative medicine. However, because the three-dimensional hESC aggregates [embryoid bodies (hEB)] typically employed to reveal hESC developmental potential are heterogeneous and exhibit disorganized differentiation, progress in hESC technology development has been hindered. Methodology/Principal Findings: Using a centrifugal forced-aggregation strategy in combination with a novel centrifugalextraction approach as a foundation, we demonstrated that hESC input composition and inductive environment could be manipulated to form large numbers of well-defined aggregates exhibiting multi-lineage differentiation and substantially improved self-organization from single-cell suspensions. These aggregates exhibited coordinated bi-domain structures including contiguous regions of extraembryonic endoderm- and epiblast-like tissue. A silicon wafer-based microfabrication technology was used to generate surfaces that permit the production of hundreds to thousands of hEB per cm 2. Conclusions/Significance: The mechanisms of early human embryogenesis are poorly understood. We report an ultra high throughput (UHTP) approach for generating spatially and temporally synchronised hEB. Aggregates generated in this manner exhibited aspects of peri-implantation tissue-level morphogenesis. These results should advance fundamental studies into early human developmental processes, enable high-throughput screening strategies to identify conditions tha

    iPS Cells: Mapping the Policy Issues

    Get PDF
    iPS細胞研究を進めるための社会的課題と展望 -国際幹細胞学会でのクローズド・ワークショップの議論を基に-. 京都大学プレスリリース. 2009-12-11.Given the explosion of research on induced pluripotent stem (iPS) cells, it is timely to consider the various ethical, legal, and social issues engaged by this fast-moving field. Here, we review issues associated with the procurement, basic research, and clinical translation of iPS cells

    Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse

    No full text
    Mouse embryos mutant for the VEGF receptor, VEGFR2, Flk-1, or Kdr, fail to form both endothelial and hematopoietic cells, suggesting a possible role in a common progenitor to both lineages. The transcription factor Tal1 (Scl), is not expressed in Flk1(−/−) embryos, consistent with a downstream role in the Flk1 pathway. We tested whether expression of Tal1 under the Flk1 promoter was sufficient to rescue the loss of endothelial and hematopoietic cells in Flk1 mutants. Only partial rescue of hematopoiesis and endothelial development was observed in vivo. However, Flk1(−/Tal1) embryonic stem (ES) cells were capable of blast colony formation in vitro at levels equivalent to Flk1(+/−) heterozygotes. Ectopic expression of Tal1 under the Flk1 promoter in Flk1(+/−) mouse embryos or ES cells caused no obvious pathology but increased the number of blast colony forming cells (BL-CFCs) and enhanced their hematopoietic potential. These single-cell-derived BL-CFCs also produced smooth muscle cells in vitro. Increased Tal1 expression inhibited smooth muscle differentiation in this assay, whereas loss of Tal1 promoted smooth muscle formation. We propose a model in which the combinatorial effects of Flk1 and Tal1 act to regulate cell fate choice in early development into hematopoietic, endothelial, and smooth muscle lineages

    Knockdown of IKK1/2 Promotes Differentiation of Mouse Embryonic Stem Cells into Neuroectoderm at the Expense of Mesoderm

    Get PDF
    Lüningschrör P, Kaltschmidt B, Kaltschmidt C. Knockdown of IKK1/2 Promotes Differentiation of Mouse Embryonic Stem Cells into Neuroectoderm at the Expense of Mesoderm. Stem Cell Reviews And Reports. 2012;8(4):1098-1108.Activation of nuclear factor kappa B (NF-kappa B) is accomplished by a specific kinase complex (IKK-complex), phosphorylating inhibitors of NF-kappa B (I kappa B). In embryonic stem cells (ESCs), NF-kappa B signaling causes loss of pluripotency and promotes differentiation towards a mesodermal phenotype. Here we show that NF-kappa B signaling is involved in cell fate determination during retinoic acid (RA) mediated differentiation of ESCs. Knockdown of IKK1 and IKK2 promotes differentiation of ESCs into neuroectoderm at the expense of neural crest derived myofibroblasts. Our data indicate that RA is not only able to induce neuronal differentiation in vitro but also drives ESCs into a neural crest cell lineage represented by differentiation towards peripheral neurons and myofibroblasts. The NC is a transiently existing, highly multipotent embryonic cell population generating a wide range of different cell types. During embryonic development the NC gives rise to distinct precursor lineages along the anterior-posterior axis determining differentiation towards specific derivates. Retinoic acid (RA) signaling provides essential instructive cues for patterning the neuroectoderm along the anterior-posterior axis. The demonstration of RA as a sufficient instructive signal for the differentiation of pluripotent cells towards NC and the involvement of NF-kappa B during this process provides useful information for the generation of specific NC-lineages, which are valuable for studying NC development or disease modeling
    corecore