42 research outputs found

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3 years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0 years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Anticoagulant selection in relation to the SAMe-TT2R2 score in patients with atrial fibrillation. the GLORIA-AF registry

    Get PDF
    Aim: The SAMe-TT2R2 score helps identify patients with atrial fibrillation (AF) likely to have poor anticoagulation control during anticoagulation with vitamin K antagonists (VKA) and those with scores >2 might be better managed with a target-specific oral anticoagulant (NOAC). We hypothesized that in clinical practice, VKAs may be prescribed less frequently to patients with AF and SAMe-TT2R2 scores >2 than to patients with lower scores. Methods and results: We analyzed the Phase III dataset of the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF), a large, global, prospective global registry of patients with newly diagnosed AF and ≥1 stroke risk factor. We compared baseline clinical characteristics and antithrombotic prescriptions to determine the probability of the VKA prescription among anticoagulated patients with the baseline SAMe-TT2R2 score >2 and ≤ 2. Among 17,465 anticoagulated patients with AF, 4,828 (27.6%) patients were prescribed VKA and 12,637 (72.4%) patients an NOAC: 11,884 (68.0%) patients had SAMe-TT2R2 scores 0-2 and 5,581 (32.0%) patients had scores >2. The proportion of patients prescribed VKA was 28.0% among patients with SAMe-TT2R2 scores >2 and 27.5% in those with scores ≤2. Conclusions: The lack of a clear association between the SAMe-TT2R2 score and anticoagulant selection may be attributed to the relative efficacy and safety profiles between NOACs and VKAs as well as to the absence of trial evidence that an SAMe-TT2R2-guided strategy for the selection of the type of anticoagulation in NVAF patients has an impact on clinical outcomes of efficacy and safety. The latter hypothesis is currently being tested in a randomized controlled trial. Clinical trial registration: URL: https://www.clinicaltrials.gov//Unique identifier: NCT01937377, NCT01468701, and NCT01671007

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Dynamics of H\u3csup\u3e+\u3c/sup\u3e N2 at ELab 30 eV

    No full text
    The H+ N2 system at ELab 30 eV, relevant in astrophysics, is investigated with the simplest-level electron nuclear dynamics (SLEND) method. SLEND is a time-dependent, direct, variational, non-adiabatic method that employs a classical-mechanics description for the nuclei and a single-determinantal wavefunction for the electrons. A canonical coherent-states procedure, intrinsic to SLEND, is used to reconstruct quantum vibrational properties from the SLEND classical mechanics. Present simulations employ three basis sets: STO-3G, 6-31G, and 6-31G**, to determine their effect on the results, which include reaction visualizations, product predictions, and scattering properties. Present simulations predict non-charge-transfer scattering and N2 collision-induced dissociation as the main reactions. Average vibrational energy transfer, H+ energy-loss spectra, rainbow angle, and elastic vibrational differential cross sections at the SLEND6-31G** level agree well with available experimental data. SLEND6-31G** results are comparable to those calculated with the vibrational close-coupling rotational infinite-order sudden approximation and the quasi-classical trajectory method. © 2011 American Institute of Physics

    Some recent developments in the simplest-level electron nuclear dynamics method. Theory, code implementation, and applications to chemical dynamics

    No full text
    Electron nuclear dynamics (END) is a time-dependent, variational, direct, and nonadiabatic dynamics method that treats nuclei and electrons simultaneously. While admitting a hierarchy of realizations, the simplest-level END (SLEND), which adopts nuclear classical dynamics and an electronic Thouless single-determinantal state, is the most utilized END version due to its feasibility. SLEND was successfully applied to various gas-phase reactions at intermediate and high energies. However, the SLEND reliance on nuclear classical dynamics alone and/or its lack of dynamical electron correlation inter alia impedes its reliable utilization for more challenging systems. With higher level END realizations overcoming those shortcomings at high computational cost, we advocate solutions that retain SLEND\u27s feasibility due to classical dynamics and the single-determinantal representation. Thus, we advance a novel SLEND/density functional theory (DFT) method wherein electron correlation is included within a feasible single-determinantal representation through DFT procedures. Additionally, we extend a coherent states (CS) quantum reconstruction procedure (CSQRP) to recover some quantum effects from the nuclear classical dynamics; CSQRP now features harmonic, Morse, rotational, and electronic CS. Finally, we improve the SLEND performance by incorporating effective core potentials and implementing our models in our cutting-edge code PACE. The latter features parallel programming and an environment for rapid method development. The new SLEND developments are applied to various gas-phase systems at intermediate and high energies including proton-molecule collisions and Diels-Alder, SN2, and proton cancer therapy reactions. © 2013 Elsevier Inc

    In Honour of N. Yngve Öhrn: Surveying Proton Cancer Therapy Reactions with Öhrn\u27s Electron Nuclear Dynamics Method. Aqueous Clusters Radiolysis and DNA-Base Damage by Proton Collisions

    No full text
    © 2014 © 2014 Taylor & Francis. Proton cancer therapy (PCT) utilises high-energy H+ projectiles to cure cancer. PCT healing arises from its DNA damage in cancerous cells, which is mostly inflicted by the products from PCT water radiolysis reactions. While clinically established, a complete microscopic understanding of PCT remains elusive. To help in the microscopic elucidation of PCT, Professor Öhrn\u27s simplest-level electron nuclear dynamics (SLEND) method is herein applied to H+ + (H2O)3-4 and H+ + DNA-bases at ELab = 1.0 keV. These are two types of computationally feasible prototypes to study water radiolysis reactions and H+-induced DNA damage, respectively. SLEND is a time-dependent, variational, non-adiabatic and direct-dynamics method that adopts a nuclear classical-mechanics description and an electronic single-determinantal wavefunction. Additionally, our SLEND + effective-core-potential method is herein employed to simulate some computationally demanding PCT reactions. Due to these attributes, SLEND proves appropriate for the simulation of various types of PCT reactions accurately and feasibly. H+ + (H2O)3-4 simulations reveal two main processes: H+ projectile scattering and the simultaneous formation of H and OH fragments; the latter process is quantified through total integrals cross sections. H+ + DNA-base simulations reveal atoms and groups displacements, ring openings and base-to-proton electron transfers as predominant damage processes
    corecore