2,892 research outputs found

    The effects of an additive on the release of potassium in biomass combustion

    Get PDF
    This study focuses on the effects of an aluminosilicate additive on the fate of potassium during biomass combustion. Such additives have shown some success in mitigating slagging and fouling problems in boilers and furnaces, and the mobility of potassium in combustion systems is one of the key factors dictating ash behaviour. To investigate this, a flame emission spectroscopy technique was used to evaluate the differences in the gas-phase potassium release profiles during the combustion of 5 mm diameter pellets of different biomass suspended in a methane-air flame. The biomass pellets were evaluated with various mixes of an aluminosilicate based additive (5, 15 and 25 wt%). Potassium emission detection, coupled with high speed video of the combustion process, indicated that potassium evolves over the three stages of volatile combustion (a sharp peak in the emission profile), char combustion (a broader peak) and “ash cooking” (a very broad peak over an extended period, long after the end of combustion). In the absence of additive, the three biomass studied (softwood, wheat straw, olive residue) behaved quite differently in terms of potassium release profiles. When the results are normalized for the amount of potassium in the fuel, it is clear that a large fraction of potassium enters the gas phase during the volatile and char combustion of the softwood. Olive residue, releases a lower fraction of potassium during the volatile and char combustion stages, indicating that more potassium is fixed in the ash. In contrast, wheat straw shows a release of potassium during combustion, and then, after a period of “ash cooking”, a substantial gradual release with continued exposure to hot combustion gases. The difference in the emission profiles can be interpreted in terms of the K:Cl ratios and the K:(Si+Al) ratios: high chlorine and/or low (Si+Al) facilitates the release of KCl or KOH to the gas phase, while high (Si+Al) helps to fix K in the solid phase. The addition of the aluminosilicate additive shows a clear reduction in the potassium released from all the biomass pellets, particularly during the char-oxidation and “ash cooking” stages, and the level of additive required is related to the amount of K in the biomass. The potassium emission experiments were complemented by laboratory-scale preparation of ash at different temperatures, and detection of residual potassium in the ash using Atomic Absorption Spectroscopy (AAS). These results validated the findings and quantified the higher fractions of potassium retained within the ash when additives are used. For the wood ash 70-100% of K is retained in the ash in the presence of additive; for the wheat straw, this figure is 60-80% and for the olive pellets it is 70-100%

    Gas phase potassium release from a single particle of biomass during high temperature combustion

    Get PDF
    A notable characteristic of solid biomass fuels as compared to coal is their significantly higher potassium content. Potassium influences ash deposition and corrosion mechanisms in furnaces and boilers, the effects of which may differ depending on phase transformations of potassium species in the gas phase and condensed phase. An understanding of how potassium is released from biomass fuels during the combustion process is therefore useful for plant designers and operators assessing means of avoiding or mitigating these potential problems. An experimental method is used to measure release patterns from single particles of biomass fuels using flame emission spectroscopy and a single-particle combustion rig. The experimental arrangement also allowed simultaneous thermal imaging of the combusting particle in order to determine the surface temperature. A model of the single particle combustion is presented. Using experimental data on devolatilisation and burnout times for different sized particles and the measured surface temperature profiles, the thermal and kinetic sub-models are verified. A model for potassium release is described and this is integrated to the single particle combustion model to allow prediction of the temporal patterns of release of gas-phase potassium. The modelled release patterns were compared with those observed. Good agreement between modelled and measured potassium release patterns was attained confirming that the proposed mechanisms affecting potassium release are valid

    Determinants of Catch-Up Growth in International Adoptees from Eastern Europe

    Get PDF
    Children raised in orphanages frequently experience growth suppression due to multiple risk factors. Placing such children in more nurturing environments through adoption leads to significant catch-up growth (CUG), the determinants of which are not entirely understood. The goal of this study was to perform an auxological evaluation and examine the degree and correlates of CUG in international adoptees. Children adopted from Eastern Europe, (n = 148, 71 males), 7 to 59 months of age, were recruited within 3 weeks of their arrival to the US. At baseline, mean height SDS was −1.2 ± 1.1 and 22% were <−2 SDS for height. IGF-1 and/or IGFBP-3 levels <−2 SDS were present in 32%. CUG, defined as a gain of >+0.5 in height SDS, was seen in 62% of adoptees at 6 months after adoption; 7% of children remained <−2 SDS for height (two had growth hormone deficiency). Growth factors improved in the majority of children. Younger age, greater degree of initial growth failure, and higher caloric intake were significantly associated with improved linear growth in multiple regression models. In summary, most adoptees demonstrate excellent CUG within six months after adoption. If growth failure persists after 6 months of appropriate caloric intake, nutrition-independent causes should be considered

    The Grism Lens-Amplified Survey from Space (GLASS) X. Sub-kpc resolution gas-phase metallicity maps at cosmic noon behind the Hubble Frontier Fields cluster MACS1149.6+2223

    Get PDF
    (Abridged) We combine deep HST grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity, nebular dust extinction, and star-formation rate for 10 star-forming galaxies at high redshift (1.2<z<2.31.2<z<2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kpc spatial resolution and push the stellar mass limit associated with such high-z spatially resolved measurements below 108M10^8M_\odot for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, etc., which can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kpc metallicity gradients at high-z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk formation phase can explain the majority of observed gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradient, consistent with the downsizing galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z1.8z\sim1.8. We use this sample to study the mass-metallicity relation (MZR) and test the fundamental metallicity relation (FMR). The slope of the observed MZR can rule out the momentum-driven wind model at 3-σ\sigma confidence level. We find no significant offset with respect to the FMR, taking into account the intrinsic scatter and measurement uncertainties.Comment: 26 pages, 14 figures, and 6 table

    Observations on the release of gas-phase potassium during the combustion of single particles of biomass

    Get PDF
    One of the more significant characteristics of solid biomass fuels as compared to coal is the quantity of potassium that they contain. Potassium content influences ash deposition and corrosion mechanisms in furnaces, the effects of which may differ depending on phase transformations of potassium species in the gas phase and condensed phase. The fate of potassium from the fuel during the combustion process is therefore an important concern. To investigate this, an experimental method is presented in which the release patterns from single particles of various biomass fuels are measured by use of flame emission spectroscopy implemented using a custom-built photo-detector device. Single particles of fuel are combusted in a methane flame with a gas temperature of ∼1800 K. The observed potassium release patterns for thirteen solid biomass materials are presented. The data are analyzed to examine the relationships between: the level of potassium in the fuel particle; the fraction of potassium released at each stage of combustion and the peak rate of release of potassium to gas-phase during combustion. Correlations between these quantities are identified with key trends, patterns and differences highlighted. The analyses provide useful information for the development and validation of modelling of potassium release during combustion of biomass

    Closing the compliance gap in marine protected areas with human behavioural sciences

    Get PDF
    Advocates, practitioners and policy-makers continue to use and advocate for marine protected areas (MPAs) to meet global ocean protection targets. Yet many of the worlds MPAs, and especially no-take MPAs, are plagued by poaching and ineffective governance. Using a global dataset on coral reefs as an example, we quantify the potential ecological gains of governing MPAs to increase compliance, which we call the ‘compliance gap’. Using ecological simulations based on model posteriors of joint Bayesian hierarchical models, we demonstrate how increased compliance in no-take MPAs could nearly double target fish biomass (91% increases in median fish biomass), and result in a 292% higher likelihood of encountering top predators. Achieving these gains and closing the compliance gap necessitates a substantial shift in approach and practice to go beyond optimizing enforcement, and towards governing for compliance. This will require engaging and integrating a broad suite of actors, principles, and practices across three key domains: (i)) harnessing social influence, (ii) integrating equity principles, and (iii) aligning incentives through market-based instruments. Empowering and shaping communication between actor groups (e.g., between fishers, practitioners, and policy-makers) using theoretically underpinned approaches from the behavioural sciences is one of the most essential, but often underserved aspects of governing MPAs. We therefore close by highlighting how this cross-cutting tool could be further integrated in governance to bolster high levels of compliance in MPAs

    The 'At-risk mental state' for psychosis in adolescents : clinical presentation, transition and remission.

    Get PDF
    Despite increased efforts over the last decade to prospectively identify individuals at ultra-high risk of developing a psychotic illness, limited attention has been specifically directed towards adolescent populations (<18 years). In order to evaluate how those under 18 fulfilling the operationalised criteria for an At-Risk Mental State (ARMS) present and fare over time, we conducted an observational study. Participants (N = 30) generally reported a high degree of functional disability and frequent and distressing perceptual disturbance, mainly in the form of auditory hallucinations. Seventy percent (21/30) were found to fulfil the criteria for a co-morbid ICD-10 listed mental health disorder, with mood (affective; 13/30) disorders being most prevalent. Overall transition rates to psychosis were low at 24 months follow-up (2/28; 7.1 %) whilst many participants demonstrated a significant reduction in psychotic-like symptoms. The generalisation of these findings may be limited due to the small sample size and require replication in a larger sample
    corecore