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ABSTRACT.

Biological control of arthropods is undergoing dramatic change due to 
heightened awareness of non-target impacts and increasing scrutiny by regulatory 
agencies.  While global trade has contributed to a greater demand for biological 
control, project funding has remained stagnant or even declined. Thus, to ensure that 
biological control remains an important option for regulating pests there is a need to 
provide guidance on what agents are appropriate in a modern, science-based 
context. Through retrospective analysis it is clear that there are situations where 
arthropod biological control agents have been successful and other situations where 
agents failed to have an impact on target pest species, and yet other situations in 
which biological control agents have backfired, causing more harm than good.  By 
determining those attributes that are associated with effective yet environmentally-
benign agents, we may be able to develop recommendations that would be useful for 
decision-making when selecting biological control agents for study. In contrast, by 
determining those attributes that are associated with ineffective or environmentally 
damaging agents, guiding principles can be developed to facilitate avoidance of 
species with these characteristics. 

INTRODUCTION.

Biological control of arthropod pests is an important component of cost-
effective, environmentally-benign integrated pest management. Early successes in 
biological control were dramatic, as exemplified by the vedalia beetle suppression of 
cottony cushion scale, and resulted in the establishment of programs and 
infrastructure that focused almost exclusively on foreign exploration for new agents.  
Generally, if an arthropod biological control agent did not cause damage to 
economically-important species and no concern was raised about impacts on other 
non-target species it was considered appropriate for release (Greathead 1986).  
However, as Greathead (1986) predicted, it is now a requirement that arthropod 
biological control agents be screened, and assessments of potential environmental 
impacts be made before release can be approved for use in both augmentative and 
classical biological control. Science-based, regionally-harmonized regulation of 
introduction of exotic natural enemies has become necessary to ensure that 
biological control remains a viable option for managing pests (Hunt et al. 2008).  With 
the increasing costs associated with research, there is an urgent challenge to 
develop methods and new guidelines to fulfill these regulatory requirements.  Van 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55683308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of ISBCA 3 – P. G. Mason, D. R. Gillespie and C. Vincent Eds. (2008)

386

Driesche & Reardon (2004) and Bigler et al. (2006) proposed methods for evaluating 
environmental impacts of biological control agents. There have been a few attempts 
to define what makes a good biological control agent of arthropod pests (e.g. 
Beddington et al. 1978; Kimberling 2004) and also what attributes contribute to non-
target risks (Holt & Hochberg 2001; Kimberling 2004; Pearson & Callaway 2005).  In 
addition, general principles have been proposed for predicting effectiveness of 
potential biological control agents.  Murdoch (1994) articulated perhaps the most 
over-arching principle hypothesized to govern effectiveness of specialized biological 
control agents: agents that are able to persist at the lowest equilibrium of their prey or 
host should be the most effective.  In addition, a number of authors have analyzed 
the historical record of biological control in order to identify factors or traits that are 
associated with success and failure (e.g. Hawkins et al. 1993; Hawkins & Cornell 
1994; Stiling 1993, Stiling & Cornelissen 2005; Kimberling 2004). Despite these 
advances, there is still much room for improving in our ability to predict whether a 
biological control agent will succeed, fail or back fire.  In this review, we provide a 
brief outline of some of the main issues that are the subject of the most current 
inquiry as an introduction to more specialized papers that follow in this session 
(Berkvens et al. 2009; Haye et al. 2009; Murray et al. 2009; Teulon et al. 2009).

CHARACTERIZING ATTRIBUTES OF SUCCESSFUL AGENTS. 

Early summaries of biological control projects (e.g., DeBach 1974; Caltagirone 
1981; DeBach & Rosen 1991; Stiling 1993) have provided insight into factors that 
contributed to success or failure of releases, but most do not mention what 
characteristics of the agents contribute to that success. Databases (e.g. Greathead & 
Greathead 1992) have compiled information on releases of biocontrol agents in 
formats that could enable the generation of statistics on successes and failures in 
control and these have recently been used to assess non-target impacts (e.g. Stiling 
& Simberloff 2000; Lynch et al. 2001). However, databases must be used cautiously 
since not all agents are thoroughly evaluated (Waage 1990).  Mathematical models 
have been used to generate hypotheses about what attributes are associated with 
successful biological control agents (reviewed by Mills & Getz 1996; Murdoch et al.
2003; Elkinton 2008).  However, relatively few empirical case studies have been 
used to test assumptions and predictions of these models (e.g. Hassell 1980; 
Godfray & Waage 1991; Murdoch et al. 1996).  In addition, for many successful 
biological control projects, the general reasons for success seem relatively obvious 
and have been inferred empirically (Table 1).

Depending on whether an agent is intended for classical or inundative biological 
control the optimal state of characteristics may vary. For example, the self-
perpetuation of a classical agent may require that it is able to survive extreme climate 
(overwinter in cold climates or aestivate in hot, dry climates) whereas agents used to 
overwhelm a pest in the short term (such as in glasshouse environments) may not be 
expected to survive extreme climates. Therefore, the optimized state may vary 
according to intended use.  In Table 2 we have noted attributes of natural enemies  
predicting effectiveness that we suspect differ between classical and augmentative 
biological control. 
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Table 1. Examples of successful biological control projects and the likely 
reasons for their success.

Target species Natural enemy Likely reasons 
Icerya purchasi  Maskell Rodolia cardinalis (Mulsant) Thermal tolerance, short development 

time with respect to prey (DeBach & 
Quezada 1973)  

Trialeurodes vaporariorum
(Westwood) 

Encarsia formosa Gahan High dispersal ability, high searching 
ability, accepts all immature host 
stages, ease of mass rearing, (van 
Lenteren 1995; Hoddle et al. 1998) 

Tetranychus urticae Koch Phytoseiulus persimilis 
Athias- Henriot

Voracious feeding, high dispersal 
ability, high searching ability, ease of 
mass rearing, availability of pesticide-
resistant strain (van Lenteren 1995) 

Phenacoccus manihoti
Matile-Ferrero 

Apoanagyrus lopezi De 
Santis

Attack of early host instars, production 
of more females on young hosts,  
superior competitive ability, high 
search capacity (Neuenschwander 
2001)  

Aonidiella aurantii (Maskell) Aphytis melinus DeBach Thermal tolerance, ability to produce 
female offspring on relatively small 
scale insects (Luck 1986; Murdoch et
al. 1996) 

Table 2. Examples of attributes predicting success of agents differently for 
classical and augmentative biological control. 

Classical Augmentative 
Distribution in host native 
range/habitats  

widespread not required 

Efficacy in native range high not required 
Dispersal capability high short range 

important
Life cycle synchronized with host synchronization 

less important for 
inundative agents 

Host specificity high high  or low 

There is no ideal set of attributes that guarantees success and some good 
attributes may not be associated with the best agents. For example, ease of rearing 
in culture is a practical aspect that has implications for early control of the target 
(Doutt & Debach 1964) and more recently for host range assessment.  However this 
must be carefully considered because effective agents might be eliminated from 
further consideration solely because they are not easily reared (Waage 1990). 

Phenotypic variability is an example of an attribute where the perceived 
optimum state can have both good and bad effects.  In terms of climate matching, a 
high level of variation of a biological control agent (i.e. populations from as many 
areas as possible in the area of origin) is desirable to ensure that one of the 
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populations matches that of the area of intended introduction.  However, high genetic 
variability may also increase the risk of non-target impacts (Phillips et al. 2008).

CHARACTERIZING ATTRIBUTES OF ENVIRONMENTALLY-RISKY BIOLOGICAL 
CONTROL AGENTS.

Whereas it is usually rather straightforward to assess whether a biological agent 
has become established in nature and, subsequently, has achieved an economic 
impact or not, it is much more problematic to assess its non-target impact on native 
biodiversity and ecosystems. Among the hundreds of biological control agents 
established worldwide, many have been found on non-target hosts or prey (Lynch et
al., 2001; Kimberling 2004).  Kimberling (2004) tried to use this information to detect 
traits associated with non-target effects. She concluded that traits that could be used 
to predict non-target effects included sex-ratio of progeny (female biased sex ratio 
being associated with lower non-target effects) and the presence of native natural 
enemies. However, she defined “non-target effects” as evidence from the literature 
that an exotic agent attacks non-target native host/prey or competes with native 
natural enemies. But the fact that a parasitoid or a predator is found parasitizing or 
feeding on a non-target species does not necessarily mean that it has a significant 
effect on populations of the non-target species. In their extensive literature survey on 
the ecological effects of alien insects, Kenis et al. (2009) found evidence for a 
significant effect on native species populations in only six intentionally introduced 
parasitoids and two intentionally-introduced predators (Table 3). All parasitoids and 
predators for which a severe non-target effect has been ascertained are known to 
attack a high number of hosts or prey. Thus, the rather recent move towards the 
selection of highly specific agents in classical biological control of arthropods is a 
good one (Van Driesche & Reardon 2004). Interestingly, several of the parasitoids 
and predators that have had documented negative effects on non-target species 
have also been considered “successful” agents. The tachinid Bessa remota (Aldrich) 
(Diptera: Tachinidae) has even been considered as extremely successful because it 
is the only parasitoid, which, in the 1920s in Fiji, is suspected to have eradicated both 
its target host, the coconut moth, Levuana irridescens Bethune-Baker (Lepidoptera: 
Zygaenidae) and a non-target native moth, Herothopan dolens Druce (Lepidoptera: 
Zygaenidae) (Kuris 2003).  However, Kuris (2003) and Hoddle (2006) have 
suggested that L. irredescens may have survived on other islands, and also that 
there is little evidence H. dolens actually went extinct.  This suggests again that traits 
associated with failure in control and non-target effects have to be analysed 
separately.

WHAT ARE WE LOOKING FOR?

There is a general consensus that no biological control agent possesses all 
ideal states of desirable attributes.  Selection criteria based on the notion that ideal 
agents can be ‘built’ by combining desirable life-history attributes are likely wrong, 
due to the likelihood of correlated life-history tradeoffs, and a more realistic approach 
would be to focus on combinations of attributes that characterize real species 
(Waage 1990).  Furthermore, characteristics associated with biological control agents 
that carry environmental risks are different from those associated with ‘good’ or 
‘failed’ agents.  As stated by Turnbull & Chant (1961), “… we must know much about 
the attributes that make an organism effective in limiting the abundance of others, 
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how this effect is modified by undesirable characters, the mechanics of interactions, 
and, of course, the way in which the introduced species will fit into its new 
environment and its chances of survival there, and the attributes that determine this.”  

Table 3. Alien biological control agents for which an effect has been 
measured on native species populations or communities (from 
Kenis et al. 2009).

Species Mechanism involved in the effect 
Parasitoids

Aphidius ervi (Haliday) (Hym.: Braconidae) Parasitism 
Bessa remota (Aldrich) (Diptera: 
Tachinidae) 

Parasitism

Cales noaki Howard (Hymenoptera: 
Aphelinidae) 

Competition with native parasitoid 

Compsilura concinnata (Meigen) (Diptera: 
Tachinidae) 

Parasitism and competition 

Lisiphlebus testaceipes (Cresson) 
(Hymenoptera: Braconidae) 

Competition with native parasitoids 

Torymus sinensis Kamijo (Hymenoptera: 
Torymidae)

Hybridization with native parasitoid 

Predators
Coccinella septempunctata L. (Coleoptera: 

Coccinellidae) 
Competition for food or intra-guild 
predation

Harmonia axyridis (Pallas) (Coleoptera: 
Coccinellidae) 

Competition for food or intra-guild 
predation

Case studies provide a starting point for defining qualities associated with 
biological control agents, and some of these are in the contributions in the remainder 
of this section (Berkvens et al. 2009; Haye et al. 2009; Murray et al. 2009; Teulon et
al. 2009). Retrospective analyses where outcomes are known may be able to provide 
the data for developing ideas about attributes associated with agents perceived to be 
effective, ineffective and risky. Carefully planned, science-based studies will provide 
new insights. Furthermore, the study of natural enemy complexes through population 
interactions (intra-guild interactions) can facilitate determining appropriate attributes 
(Brodeur & Boivin 2006). In other words, we must learn as much as possible about 
the biology of candidate biological control agents and the ecological context in which 
they are used. 

CONCLUSIONS.

No comprehensive assessment of characteristics associated with effective, 
ineffective and risky biological control exists. Clearly, there is a great deal of work 
ahead. Mathematical models have a use to generate hypotheses and test scenarios 
but will need to be empirically validated.  Case studies are likely to be the source of 
information for developing databases that can be analysed. It appears that the way 
forward will be to develop an approach that captures not only the characteristics 
associated with agents but also the ecological context in which the agents are used.  
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Only then will we be able to determine principles for guiding decision making on the 
suitability of biological control agents.
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