16 research outputs found

    TOI-1338 : TESS' first transiting circumbinary planet

    Get PDF
    Funding: Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. W.F.W. and J.A.O.thank John Hood Jr. for his generous support of exoplanet research at SDSU. Support was also provided and acknowledged through NASA Habitable Worlds grant 80NSSC17K0741 and NASA XRP grant 80NSSC18K0519. This work is partly supported by NASA Habitable Worlds grant 80NSSC17K0741. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant No.(DGE-1746045). A.H.M.J.T. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 803193/BEBOP) and from a Leverhulme Trust Research Project grant No. RPG-2018-418. A.C. acknowledges support by CFisUC strategic project (UID/FIS/04564/2019).We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M⊙ and 0.3 M⊙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations—a common signature of transiting CBPs. Its orbit is nearly circular (e ≍ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.Publisher PDFPeer reviewe

    An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the <i>Transiting Exoplanet Survey Satellite</i> Full Frame Images

    Get PDF
    We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff = 5645 ± 50 K, a mass of M ⋆ = {1.128}-0.061+0.065 M ⊙, radius of R ⋆ = {1.777}-0.044+0.047 R ⊙, a surface gravity of log g ⋆ = {3.993}-0.028+0.027, and an age of {7.4}-1.5+1.6 {Gyr}. Its planetary companion (TOI-172 b) has a radius of R P = {0.965}-0.029+0.032 R J, a mass of M P = {5.42}-0.20+0.22 M J, and is on an eccentric orbit (e={0.3806}-0.0090+0.0093). TOI-172 b is one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution of similar systems

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    Hansard as an Aid to Statutory Interpretation in Canadian Courts from 1999 to 2010

    No full text
    corecore