360 research outputs found

    Characterization Of Chemically Induced Ovarian Carcinomas In An Ethanol-preferring Rat Model: Influence Of Long-term Melatonin Treatment.

    Get PDF
    Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel) has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH), they were surgically injected with 100 ”g of 7,12-dimethyl-benz[a]anthracene (DMBA) plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 ”g mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC); Group C+EtOH, rats voluntarily consuming 10% (v/v) EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of adenocarcinomas in ethanol-deprived rats.8e8167

    Mmp-2 And Mmp-9 activities and Timp-1 and Timp-2 expression in the prostatic tissue of two ethanol-preferring rat models

    Get PDF
    We investigated whether chronic ethanol intake is capable of altering the MMP-2 and MMP-9 activities and TIMP-2 and TIMP-1 expression in the dorsal and lateral prostatic lobes of low (UChA) and high (UChB) ethanol-preferring rats. MMP-2 and MMP9 activities and TIMP-1 and TIMP-2 expression were significantly reduced in the lateral prostatic lobe of the ethanol drinking animals. Dorsal prostatic lobe was less affected showing no significant alterations in these proteins, except for a reduction in the TIMP-1 expression in UChA rats. These important findings demonstrate that chronic ethanol intake impairs the physiological balance of the prostate extracellular matrix turnover, through downregulation of MMPs, which may contribute to the development of prostatic diseases. Furthermore, since these proteins are also components of prostate secretion, the negative impact of chronic ethanol intake on fertility may also involve reduction of MMPs and TIMPs in the seminal fluid2015COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2011/03394-4; 2011/13713-

    Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes

    Get PDF
    Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.This work was supported by the IWRM Era-Net Funding Initiative through the RIPFLOW project (references ERAC-CT-2005-026025, ERA-IWRM/0001/2008, CGL2008-03076-E/BTE), http://www.old.iwrm-net.eu/spip.php. Rui Rivaes benefited from a PhD grant sponsored by UTL - Universidade Tecnica de Lisboa (www.utl.pt) and Patricia Maria Rodriguez-Gonzalez benefited from a post-doctoral grant sponsored by FCT - Fundacao para a Ciencia e Tecnologia (www.fct.pt) (SFRH/BPD/47140/2008). The Spanish team would like to thank the Spanish Ministry of the Economy and Competitiveness the support provided through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Environmental Consulting Klagenfurt provided support in the form of salaries for authors EP and GE, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the `author contributions' section.Rivaes, R.; RodrĂ­guez-GonzĂĄlez, P.; Ferreira, MT.; Pinheiro, A.; Politti, E.; Egger, G.; GarcĂ­a-Arias, A.... (2014). Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS ONE. 9(10):1-14. https://doi.org/10.1371/journal.pone.0110200S114910Bach, W. (1976). Global air pollution and climatic change. Reviews of Geophysics, 14(3), 429. doi:10.1029/rg014i003p00429Benton GS (1970) Carbon dioxide and its role in climate change. National Academy of Sciences. pp. 898–899.Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russell, G. (1981). Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213(4511), 957-966. doi:10.1126/science.213.4511.957Lovelock, J. E. (1971). Air pollution and climatic change. Atmospheric Environment (1967), 5(6), 403-411. doi:10.1016/0004-6981(71)90143-0IPCC (2008) Climate change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Team CW, Pachauri RK, Reisinger A, editors. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 104 p.Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, et al.. (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al.., editors. Climate Change 2007: The Physical Science Basis Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. pp. 747–845.Alcamo J, Moreno JM, NovĂĄky B, Bindi M, Corobov R, et al.. (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 541–580.Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81(S1), 7-30. doi:10.1007/s10584-006-9210-7Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, et al.. (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al.., editors. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdon and New York, NY, USA: Cambridge University Press. pp. 848–940.Schneider, C., LaizĂ©, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325-339. doi:10.5194/hess-17-325-2013Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Climatic Change, 50(1/2), 143-175. doi:10.1023/a:1010616428763Serrat-Capdevila, A., ValdĂ©s, J. B., PĂ©rez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347(1-2), 48-66. doi:10.1016/j.jhydrol.2007.08.028Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & ValdĂ©s, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021Verzano K, Menzel L (2007) Snow conditions in mountains and climate change - a global view. In: Marks D, Hock R, Lehning M, Hayashi M, Gurney R, editors; Perugia, IT. IAHS Proceedings and Reports. pp. 147–154.ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247Murray, S. J., Foster, P. N., & Prentice, I. C. (2012). Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology, 448-449, 14-29. doi:10.1016/j.jhydrol.2012.02.044Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., 
 Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099Lloyd NJ, Quinn G, Thoms MC, Arthington AH, Gawne B, et al.. (2004) Does flow modification cause geomorphological and ecological response in rivers? A literature review from an Australian perspective. Technical report 1/2004. Canberra, Australia: CRC for Freshwater Ecology. 0975164202. 57 p. http://www.library.adelaide.edu.au/cgi-bin/director?id=V1114450Jenkins, M. (2003). Prospects for Biodiversity. Science, 302(5648), 1175-1177. doi:10.1126/science.1088666Costanza, R., d’ Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., 
 van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253-260. doi:10.1038/387253a0Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2011). Vulnerability of riparian ecosystems to elevated CO 2 and climate change in arid and semiarid western N orth A merica. Global Change Biology, 18(3), 821-842. doi:10.1111/j.1365-2486.2011.02588.xKARRENBERG, S., EDWARDS, P. J., & KOLLMANN, J. (2002). The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4), 733-748. doi:10.1046/j.1365-2427.2002.00894.xMERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.xRood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113Junk WJ, Bayley PB, Sparks RE (1989) The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, editor. Canadian Special Publication of Fisheries and Aquatic Sciences. pp. 110–127.Naiman and, R. J., & DĂ©camps, H. (1997). THE ECOLOGY OF INTERFACES:Riparian Zones. Annual Review of Ecology and Systematics, 28(1), 621-658. doi:10.1146/annurev.ecolsys.28.1.621NRC NRC (2002) Riparian Areas: Functions and Strategies for Management. Washington, D.C., USA: The National Academies Press. 444 p.McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., 
 Pinay, G. (2003). Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems, 6(4), 301-312. doi:10.1007/s10021-003-0161-9Tockner, K., & Stanford, J. A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation, 29(3), 308-330. doi:10.1017/s037689290200022xTockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, et al.. (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC, editor. Aquatic Ecosystems: trends and global prospects. New York, USA: Cambridge University Press. pp. 482.Broadmeadow, S., & Nisbet, T. R. (2004). The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrology and Earth System Sciences, 8(3), 286-305. doi:10.5194/hess-8-286-2004Naiman, R. J., Decamps, H., & Pollock, M. (1993). The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecological Applications, 3(2), 209-212. doi:10.2307/1941822Casatti, L., Teresa, F. B., Gonçalves-Souza, T., Bessa, E., Manzotti, A. R., Gonçalves, C. da S., & Zeni, J. de O. (2012). From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology, 10(1), 205-214. doi:10.1590/s1679-62252012000100020Blackwell MSA, Maltby E, editors (2006) How to use floodplains for flood risk reduction. Luxembourg, Belgium: European Communities. 144 p.Daily GC, editor (1997) Nature's Services - Societal Dependence on Natural Ecosystems. Washington D. C., USA: Island press. 392 p.Berges SA (2009) Ecosystem services of riparian areas: stream bank stability and avian habitat. Ames, Iowa, USA: Iowa State University. 106 p.Flather CH, Cordell HK (1995) Outdoor Recreation: Historical and Anticipated Trends. In: Knight RL, Gutzwiller KJ, editors. Wildlife and Recreationists - Coexistence through management and research. Washington D. C., USA: Island press. pp. 372.Holmes, T. P., Bergstrom, J. C., Huszar, E., Kask, S. B., & Orr, F. (2004). Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics, 49(1), 19-30. doi:10.1016/j.ecolecon.2003.10.015NAIMAN, R. J., BILBY, R. E., & BISSON, P. A. (2000). Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 50(11), 996. doi:10.1641/0006-3568(2000)050[0996:reamit]2.0.co;2Nehlsen, W., Williams, J. E., & Lichatowich, J. A. (1991). Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries, 16(2), 4-21. doi:10.1577/1548-8446(1991)0162.0.co;2LoučkovĂĄ, B. (2011). VEGETATION-LANDFORM ASSEMBLAGES ALONG SELECTED RIVERS IN THE CZECH REPUBLIC, A DECADE AFTER A 500-YEAR FLOOD EVENT. River Research and Applications, 28(8), 1275-1288. doi:10.1002/rra.1519Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., & Ajami, H. (2010). A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259(6), 1181-1189. doi:10.1016/j.foreco.2010.01.005Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L., Merritt, D. M., 
 Tarboton, D. (2005). River restoration. Water Resources Research, 41(10). doi:10.1029/2005wr003985Auble, G. T., Scott, M. L., & Friedman, J. M. (2005). Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas. Wetlands, 25(1), 143-154. doi:10.1672/0277-5212(2005)025[0143:uoisra]2.0.co;2Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933Dixon, M. D., & Turner, M. G. (2006). Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications, 22(10), 1057-1083. doi:10.1002/rra.948Orellana, F., Verma, P., Loheide, S. P., & Daly, E. (2012). Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Reviews of Geophysics, 50(3). doi:10.1029/2011rg000383Primack, A. G. B. (2000). SIMULATION OF CLIMATE-CHANGE EFFECTS ON RIPARIAN VEGETATION IN THE PERE MARQUETTE RIVER, MICHIGAN. Wetlands, 20(3), 538-547. doi:10.1672/0277-5212(2000)0202.0.co;2Tealdi, S., Camporeale, C., & Ridolfi, L. (2013). Inter-species competition–facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology, 318, 13-21. doi:10.1016/j.jtbi.2012.11.006Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84-99. doi:10.1899/08-048.1Politti E, Egger G, Angermann K, Blamauer B, Klösch M, et al.. (2011) Evaluating climate change impacts on Alpine floodplain vegetation. In: C. Chomette & Steiger E, editor; 15–17 June; Clermont-Ferrand, France. pp. 177–182.Rivaes R, RodrĂ­guez-GonzĂĄlez PM, Albuquerque A, Pinheiro AN, Egger G, et al.. (2012) Climate change impacts on Mediterranean riparian vegetation; 5th International Perspective on Water Resources & the Environment (IPWE 2012). January 4th-7th; Marrakech, Morocco.Mader H, Steidl T, Wimmer R (1996) Abflußregime österreichischer FließgewĂ€sser. Wien, AUT: Umweltbundesamt. 192 p.Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, et al.. (2001) Climate Scenario Development. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, et al.., editors. Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press. pp. 739–768.Nakicenovik N, Swart R, editors (2000) Emission Scenarios - Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Cambridge, UK: Cambridge University Press. 570 p.Santos FD, Forbes K, Moita R, editors (2002) Climate Change in Portugal, Scenarios, Impacts and Adaptation Measures - SIAM project. Lisbon, Portugal: Gradiva. 454 p.Stanzel, P., & Nachtnebel, H. P. (2010). Mögliche Auswirkungen des Klimawandels auf den Wasserhaushalt und die Wasserkraftnutzung in Österreich. Österreichische Wasser- und Abfallwirtschaft, 62(9-10), 180-187. doi:10.1007/s00506-010-0234-xMoreno JM, AguilĂł E, Alonso S, Cobelas MÁ, AnadĂłn R, et al.. (2005) A Preliminary Assessment of the Impacts in Spain due to the Effects of Climate Change. Madrid, SP: Ministerio del Medio Ambiente.Santos FD, Miranda P, editors (2006) AlteraçÔes climĂĄticas em Portugal cenĂĄrios, impactos e medidas de adaptação, Projecto SIAM II. Lisbon, Portugal: Gradiva. 506 p.Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford Watershed Model IV. Department of Civil Engineering, Stanford University. 210 p.HernĂĄndez L (2007) Efectos del Cambio ClimĂĄtico en los Sistemas Complejos de Recursos HĂ­dricos. AplicaciĂłn a la Cuenca del Jucar. Valenvia, SP: Universidad PolitĂ©cnica de Valencia.Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017Stanley, E. H., Powers, S. M., & Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29(1), 67-83. doi:10.1899/08-027.1Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573-592. doi:10.2307/1468118Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., 
 Wissmar, R. C. (1988). The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society, 7(4), 433-455. doi:10.2307/1467300White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. The Botanical Review, 45(3), 229-299. doi:10.1007/bf02860857Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14(16-17), 2861-2883. doi:10.1002/1099-1085(200011/12)14:16/173.0.co;2-fBenjankar R, Egger G, Jorde K (2009) Development of a dynamic floodplain vegetation model for the Kootenai river, USA: concept and methodology. 7th ISE and 8th HIC.Egger, G., Politti, E., Woo, H., Cho, K.-H., Park, M., Cho, H., 
 Lee, H. (2012). Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-environment Research, 6(2), 151-161. doi:10.1016/j.jher.2012.01.007GarcĂ­a-Arias A, FrancĂ©s F, AndrĂ©s-DomĂ©nech I, VallĂ©s F, GarĂłfano-GĂłmez V, et al. (2011) Modeling the spatial distribution and temporal dynamics of Mediterranean riparian vegetation in a reach of the Mijares River (Spain). In: CChomette & Steiger E, editor; EUROMECH Colloquium 523. 15–17 June; Clermont-Ferrand, France. pp. 153–157.GarcĂ­a-Arias, A., FrancĂ©s, F., Ferreira, T., Egger, G., MartĂ­nez-Capel, F., GarĂłfano-GĂłmez, V., 
 RodrĂ­guez-GonzĂĄlez, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331Rivaes, R., RodrĂ­guez-GonzĂĄlez, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., & Ferreira, M. T. (2012). Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology, 6(3), 413-424. doi:10.1002/eco.1287RIPFLOW (2011) Riparian vegetation modelling for the assessment of environmental flow regimes and climate change impacts within the WFD. 238 p. http://www.iiama.upv.es/RipFlow/publications/08_RIPFLOW%20Project%20-%20Final%20Report.pdf.R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.Bendix, J., & Hupp, C. R. (2000). Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes, 14(16-17), 2977-2990. doi:10.1002/1099-1085(200011/12)14:16/173.0.co;2-4Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.xPardĂ© M (1955) Fleuves et riviĂšres. Paris: Armand Colin. 241 p.L'vovich MI (1979) World water resources and their future. Chelsea, Michigan, USA: American Geophysical Union. 415 p.WrzesiƄski, D. (2013). Uncertainty of Flow Regime Characteristics of Rivers in Europe. Quaestiones Geographicae, 32(1), 43-53. doi:10.2478/quageo-2013-0006Friedman, J. M., & Lee, V. J. (2002). EXTREME FLOODS, CHANNEL CHANGE, AND RIPARIAN FORESTS ALONG EPHEMERAL STREAMS. Ecological Monographs, 72(3), 409-425. doi:10.1890/0012-9615(2002)072[0409:efccar]2.0.co;2Whited, D. C., Lorang, M. S., Harner, M. J., Hauer, F. R., Kimball, J. S., & Stanford, J. A. (2007). CLIMATE, HYDROLOGIC DISTURBANCE, AND SUCCESSION: DRIVERS OF FLOODPLAIN PATTERN. Ecology, 88(4), 940-953. doi:10.1890/05-1149Gurnell, A. (2013). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4-25. doi:10.1002/esp.3397Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1-2), 129-141. doi:10.1016/j.earscirev.2011.11.005Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., 
 Steiger, J. (2011). Feedbacks betwee

    Molecular Characterization and Antifungal Susceptibility of Clinical Fusarium Species From Brazil

    Get PDF
    Fusarium is widely distributed in the environment and is involved with plant and animal diseases. In humans, several species and species complexes (SC) are related to fusariosis, i.e., F. solani SC, F. oxysporum SC, F. fujikuroi SC, F. dimerum, F. chlamydosporum, F. incarnatum-equiseti, and F. sporotrichoides. We aimed to investigate the susceptibility of Fusarium clinical isolates to antifungals and azole fungicides and identify the species. Forty-three clinical Fusarium isolates were identified by sequencing translation elongation factor 1-alpha (TEF1α) gene. Antifungal susceptibility testing was performed to the antifungals amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole, and the azole fungicides difenoconazole, tebuconazole, and propiconazole. The isolates were recovered from patients with median age of 36 years (range 2–78 years) of which 21 were female. Disseminated fusariosis was the most frequent clinical form (n = 16, 37.2%) and acute lymphoblastic leukemia (n = 7; 16.3%) was the most commonly underlying condition. A few species described in Fusarium solani SC have recently been renamed in the genus Neocosmospora, but consistent naming is yet not possible. Fusarium keratoplasticum FSSC 2 (n = 12) was the prevalent species, followed by F. petroliphilum FSSC 1 (n = 10), N. gamsii FSSC 7 (n = 5), N. suttoniana FSSC 20 (n = 3), F. solani sensu stricto FSSC 5 (n = 2), Fusarium sp. FSSC 25 (n = 2), Fusarium sp. FSSC 35 (n = 1), Fusarium sp. FSSC18 (n = 1), F. falciforme FSSC 3+4 (n = 1), F. pseudensiforme (n = 1), and F. solani f. xanthoxyli (n = 1). Amphotericin B had activity against most isolates although MICs ranged from 0.5 to 32 ÎŒg mL-1. Fusarium keratoplasticum showed high MIC values (8–>32 ÎŒg mL-1) for itraconazole, voriconazole, posaconazole, and isavuconazole. Among agricultural fungicides, difenoconazole had the lowest activity against FSSC with MICs of >32 ÎŒg mL-1 for all isolates

    Red propolis and its dyslipidemic regulator formononetin: evaluation of antioxidant activity and gastroprotective effects in rat model of gastric ulcer

    Get PDF
    Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50–500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.This work has been funded by the Fundação de ApoioàPesquisa eàInovação Tecnológica do Estadode Sergipe (FAPITEC/SE), by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).R.L.C.d.A.-J., S.M.T., and J.C.C. received CNPq productivity grants. E.B.S. acknowledges the sponsorship of theproject UIDB/04469/2020 (strategic fund), from the Portuguese Science and Technology Foundation, Ministry ofScience and Education (FCT/MEC) through national funds, and was co-financed by FEDER, under the PartnershipAgreement PT2020. E.N. and A.S. acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D1800014000info:eu-repo/semantics/publishedVersio

    Identification of a new European rabbit IgA with a serine-rich hinge region

    Get PDF
    <div><p>In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of <i>IGHV</i>a1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.</p></div

    Tradução de artigos científicos no domínio da medicina: especificidades

    Get PDF
    RelatĂłrio de EstĂĄgio apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializada, sob orientação de Doutor Manuel Fernando Moreira da SilvaNeste relatĂłrio descreve-se o trabalho realizado no estĂĄgio realizado no Centro de Estudos Matex para conclusĂŁo do Mestrado em Tradução e Interpretação Especializada no Instituto Superior de Contabilidade e Administração do Porto. De forma a melhor sustentar este relatĂłrio de estĂĄgio Ă© apresentada uma anĂĄlise sobre algumas teorias de tradução e, na sequĂȘncia dessa mesma anĂĄlise, foi escolhido o modelo proposto por Daniel Gouadec como metodologia de trabalho. Posteriormente Ă© feita uma breve anĂĄlise sobre o texto cientĂ­fico, a tradução na ĂĄrea da medicina e, tambĂ©m sobre as caracterĂ­sticas de um artigo cientĂ­fico. Foram ainda descritas as dificuldades mais comuns na tradução de textos mĂ©dicos juntamente com uma breve anĂĄlise sobre terminologia cientĂ­fica e mĂ©dica. ApĂłs esta revisĂŁo teĂłrica, seguiu-se a fase relativa ao processo tradutivo, onde foram seguidas as fases propostas pelo modelo de Gouadec, na elaboração da tradução dos artigos cientĂ­ficos. Os artigos inserem-se na ĂĄrea da tradução tĂ©cnica, nomeadamente da medicina. O presente trabalho revelou-se importante quer na aquisição de conhecimentos quer na prĂĄtica do que Ă© a tradução freelance em ambiente empresarial. AtravĂ©s do mesmo foi possĂ­vel ficar a conhecer de perto muitas das especificidades e dificuldades que se podem encontrar na tradução tĂ©cnica.In this report it is described the work developed during the traineeship in Centro de Estudos Matex for the conclusion of the Masters degree in Translations and Specialized Interpretations in the Institute of Accounting and Administration of Porto (ISCAP). In order to sustain better the traineeship report it is presented an analysis of some translations theories and in the sequence of this analysis it was chosen Daniel Gouadecs work methodology. Then a brief analysis was made on scientific text, translation in the medical area and also on the characteristics of a scientific article. . It was also described the most common difficulties in translating medical texts and together with a brief analysis on scientific terminology and medical terminology. After this theorical revision it followed the phase related to the translation process and all the phases proposed by Gouadec were followed in the translation of the scientific articles. The articles translated are from the technical translation area, namely medicine. This work has revealed to be important in the acquisition of practice knowledge of freelance translation in the corporate world. It was also possible to know closely all the specificities and difficulties you can find in technical translation

    Data standardization of plant–pollinator interactions

    Get PDF
    Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of termsinfo:eu-repo/semantics/publishedVersio

    Brabykinin B1 Receptor Antagonism Is Beneficial in Renal Ischemia-Reperfusion Injury

    Get PDF
    Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 ”g/kg) or B2 receptor (HOE140, 200 ”g/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism (R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1ÎČ transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI

    Exploring diurnal variation using piecewise linear splines:an example using blood pressure

    Get PDF
    Background: There are many examples of physiological processes that follow a circadian cycle and researchers are interested in alternative methods to illustrate and quantify this diurnal variation. Circadian blood pressure (BP) deserves additional attention given uncertainty relating to the prognostic significance of BP variability in relation to cardiovascular disease. However, the majority of studies exploring variability in ambulatory blood pressure monitoring (ABPM) collapse the data into single readings ignoring the temporal nature of the data. Advanced statistical techniques are required to explore complete variation over 24 h. Methods: We use piecewise linear splines in a mixed-effects model with a constraint to ensure periodicity as a novel application for modelling daily blood pressure. Data from the Mitchelstown Study, a cross-sectional study of Irish adults aged 47–73 years (n = 2047) was utilized. A subsample (1207) underwent 24-h ABPM. We compared patterns between those with and without evidence of subclinical target organ damage (microalbuminuria). Results: We were able to quantify the steepest rise and fall in SBP, which occurred just after waking (2.23 mmHg/30 min) and immediately after falling asleep (−1.93 mmHg/30 min) respectively. The variation about an individual’s trajectory over 24 h was 12.3 mmHg (standard deviation). On average those with microalbuminuria were found to have significantly higher SBP (7.6 mmHg, 95% CI 5.0–10.1) after adjustment for age, sex and BMI. Including an interaction term between each linear spline and microalbuminuria did not improve model fit. Conclusion: We have introduced a practical method for the analysis of ABPM where we can determine the rate of increase or decrease for different periods of the day. This may be particularly useful in examining chronotherapy effects of antihypertensive medication. It offers new measures of short-term BP variability as we can quantify the variation about an individual’s trajectory but also allows examination of the variation in slopes between individuals (random-effects)
    • 

    corecore