2,921 research outputs found

    Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb

    Get PDF
    Energy filtering has been suggested by many authors as a means to improve thermoelectric properties. The idea is to filter away low-energy charge carriers in order to increase Seebeck coefficient without compromising electronic conductivity. This concept was investigated in the present paper for a specific material (ZnSb) by a combination of first-principles atomic-scale calculations, Boltzmann transport theory, and experimental studies of the same system. The potential of filtering in this material was first quantified, and it was as an example found that the power factor could be enhanced by an order of magnitude when the filter barrier height was 0.5~eV. Measured values of the Hall carrier concentration in bulk ZnSb were then used to calibrate the transport calculations, and nanostructured ZnSb with average grain size around 70~nm was processed to achieve filtering as suggested previously in the literature. Various scattering mechanisms were employed in the transport calculations and compared with the measured transport properties in nanostructured ZnSb as a function of temperature. Reasonable correspondence between theory and experiment could be achieved when a combination of constant lifetime scattering and energy filtering with a 0.25~eV barrier was employed. However, the difference between bulk and nanostructured samples was not sufficient to justify the introduction of an energy filtering mechanism. The reasons for this and possibilities to achieve filtering were discussed in the paper

    Exploiting the Use of Convolutional Neural Networks for Localization in Indoor Environments

    Get PDF
    Indoor localization has been an active research area for the last two decades. A great number of sensors have been applied in the task of localization—some with high computational and energy demands (e.g. laser beams), or with issues related to the coverage area, for example, by making use of images obtained by a network of cameras. A different approach, which presents less energy demands and a wide area of coverage, can be created by means of the signal strength of wireless networks. The open issue with signal strength is its high instability due to interferences, attenuation and fading, which, in general, makes the localization systems to present less than desired accuracy. In this article, we exploit the use of Convolutional Neural Networks (ConvNets) in the task of localization. The main motivation behind the employment of ConvNets is its inherent ability of feature extraction, which we believe can deal better with the noise without a filtering step. We evaluate how ConvNets can be employed and identify the best topologies that lead to the lowest errors

    Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediation

    Get PDF
    The authors also acknowledge funding from the European Commission through the projects 1D-NEON (H2020-NMP-2015, grant 685758-21D). The work was also partially funded by the Nanomark collaborative project between INCM (Imprensa Nacional-Casa da Moeda) and CENIMAT/i3N. P.A. Carvalho acknowledges support from the Research Council of Norway through grants 275752 and 197405/F50.The present study reports the production of upconverter nanostructures composed by a yttrium oxide host matrix co-doped with ytterbium and europium, i.e., Y2O3:Yb3+/Eu3+. These nanostructures were formed through the dissociation of yttrium, ytterbium and europium oxides using acetic, hydrochloric and nitric acids, followed by a fast hydrothermal method assisted by microwave irradiation and subsequent calcination process. Structural characterization has been carried out by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM) both coupled with energy dispersive X-ray spectroscopy (EDS). The acid used for dissociation of the primary oxides played a crucial role on the morphology of the nanostructures. The acetic-based nanostructures resulted in nanosheets in the micrometer range, with thickness of around 50 nm, while hydrochloric and nitric resulted in sphere-shaped nanostructures. The produced nanostructures revealed a homogeneous distribution of the doping elements. The thermal behaviour of the materials has been investigated with in situ X-Ray diffraction and differential scanning calorimetry (DSC) experiments. Moreover, the optical band gaps of all materials were determined from diffuse reflectance spectroscopy, and their photoluminescence behaviour has been accessed showing significant differences depending on the acid used, which can directly influence their upconversion performance.publishersversionpublishe

    Pathogens in ornamental waters: a follow up study

    Get PDF
    Ornamental waters of easy access and populated with animals are quite attractive and can hide threats to human health. Here we evaluated the microbiota of ornamental waters in a Lisbon park. Water and biofilm samples where collected, in 2 lakes (L1-L2) and ornamental fountains (L3-L4) in February/2015. In May/2015 and monthly during a year (starting March/2016) samples from L4 where collected. Microbiota identification was performed as described previouslya. Biofilm assembly was monitored by crystal violet assay and SEMb and antibiotic susceptibility was performed by conventional methods. The results of the first water sampling (Feb/2015) revealed the presence of Enterobactereaceae and non-fermentative oxidase-positive bacteria. Fountains and lakes presented different microbota being the highest diversity found in L1 hosting a duck population. This result suggested the existence of an interplay between animal inhabitants and microbiota which was confirmed by the second sampling of L4 (May/2015). Between the 2 sampling events a fish population was introduced and the microbiota was completely altered with the appearance of a typical fish pathogen (Aeromonas spp). This tendency was also confirmed over 2016. K. pneumoniae and Aeromonas spp., present as planktonic and biofilm organized bacteria in 2015 showed an enhanced ability to assemble biofilms in vitro at 25 °C than at 37 °C. Bacteria recovered from biofilm showed an increased antibiotic resistance compared to planktonic counterparts. The pilot study conducted during 2015 and the follow up study (still in progress) support a periodic control of ornamental water microbiota as simple preventive measure to avoid potential health issues.Fundação para a Ciência e Tecnologia for the grant PEst-OE/CTM/UI0084/2011N/

    Ebv infections in Brazil III - infectious mononucleosis

    Get PDF

    Damage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactors

    Get PDF
    A CuCrFeTiV high entropy alloy was prepared and irradiated with swift heavy ions in order to check its adequacy for use as a thermal barrier in future nuclear fusion reactors. The alloy was prepared from the elemental powders by ball milling, followed by consolidation by spark plasma sintering at 1178 K and 65 MPa. The samples were then irradiated at room temperature with 300 keV Ar+ ions with fluences in the 3 × 1015 to 3 × 1018 Ar+/cm2 range to mimic neutron-induced damage accumulation during a duty cycle of a fusion reactor. Structural changes were investigated by X-ray diffraction, and scanning electron microscopy and scanning transmission electron microscopy, both coupled with X-ray energy dispersive spectroscopy. Surface irradiation damage was detected for high fluences (3 × 1018 Ar+/cm2) with formation of blisters of up to 1 μm in diameter. Cross-sectional scanning transmission electron microscopy showed the presence of intergranular cavities only in the sample irradiated with 3 × 1018 Ar+/cm2, while all irradiation experiments produced intragranular nanometric-sized bubbles with increased density for higher Ar+ fluence. The Williamson-Hall method revealed a decrease in the average crystallite size and an increase in residual strain with increasing fluence, consistent with the formation of Ar+ bubbles at the irradiated surface.publishedVersio

    Behavior of Cu-Y2O3 and CuCrZr-Y2O3 composites before and after irradiation

    Get PDF
    ABSTRACT: The Cu-Y2O3 and CuCrZr-Y2O3 materials have been devised as thermal barriers in nuclear fusion reactors. It is expected that in the nuclear environments, the materials should be working on extreme conditions of irradiation. In this work the Cu-Y2O3 and CuCrZr-Y2O3 were prepared and then irradiated in order to understand the surface irradiation resistance of the material. The composites were prepared in a glove box and consolidated with spark plasma sintering. The microstructures revealed regions of Y2O3 dispersion and Y2O3 agglomerates both in the Cu matrix and in the CuCrZr. The irradiated samples did not show any surface modification indicating that the materials seem to be irradiation resistant in the present situation. The thermal conductivity values for all the samples measured are lower than pure Cu and higher than pure W, however are higher than those expected, and therefore, the application of these materials as thermal barriers is compromised.info:eu-repo/semantics/publishedVersio

    The db/db Mouse : a Useful Model for the Study of Diabetic Retinal Neurodegeneration

    Get PDF
    Background: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks). The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG)]. Histological markers of neurodegeneration (glial activation and apoptosis) were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST) expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. Results: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01). In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. Conclusions: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the underlying mechanisms of diabetes-induced retinal neurodegeneration and for testing neuroprotective drugs

    The Genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and Pharmacological Characteristics

    Get PDF
    The genus Caesalpinia (Caesalpiniaceae) has more than 500 species, many of which have not yet been investigated for potential pharmacological activity. Several classes of chemical compounds, such as flavonoids, diterpenes, and steroids, have been isolated from various species of the genus Caesalpinia. It has been reported in the literature that these species exhibit a wide range of pharmacological properties, including antiulcer, anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antirheumatic activities that have proven to be efficacious in ethnomedicinal practices. in this review we present chemical and pharmacological data from recent phytochemical studies on various plants of the genus Caesalpinia.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Univ Fed Alfenas, Inst Chem, BR-37130000 Alfenas, MG, BrazilUniversidade Federal de São Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972 Diadema, SP, BrazilUniversidade Federal de São Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972 Diadema, SP, BrazilWeb of Scienc
    • …
    corecore