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Abstract

Indoor localization has been an active research area for the last two decades. A
great number of sensors have been applied in the task of localization, some with
high computational and energy demands, like laser beams, or with issues related
to the coverage area, for example, by making use of images obtained by a network
of cameras. A different approach, that presents less energy demands and a wide
area of coverage, can be created by means of signal strength of wireless networks.
The open issue with signal strength is it high instability due to interferences, at-
tenuation and fading; which, in general, makes the localization systems to present
less than desired accuracy. In this article we exploit the use of Convolutional Neu-
ral Networks (ConvNets) in the task of localization. The main motivation behind
the employment of ConvNets is its inherent ability of feature extraction, which
we believe can deal better with the noise without a filtering step. We evaluate
how ConvNets can be employed and which are the best topologies that lead to the
lowest errors.
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1. Introduction

Localization in indoor environments, such as buildings or underground mines,

has been focus of a great number of researches in the last few years. Localization

can be useful in a several number of tasks, like for improving rescue in case of

fires in buildings or landslides in caves or underground mines. It can also be

a source of information in shopping malls to understand people behavior or in

hospitals to track patients with mental disorders. Although localization is useful

information, the techniques employed to measure it in indoor environments still

presents a number of open questions, mainly related to accuracy and usability.

According to Harris and colleagues (Harris et al., 2014), in the period of 2006-

2010, there were more than 2,500 deaths in underground mines, being 75 in the

US alone. Moreover, according to the US Fire Administration (US Fire Adminis-

tration, 2014), in the period 2003-2012, there were more than 3.5 million of fires

in private residences and near 1 million occurrences in non-residential buildings,

bringing thousands of fatalities and injured people. An easy-to-use localization

system could help the rescue of the impacted people and also could be employed

by the rescuers to improve their own safety. Miners and speleologists are other

two groups of people in which the system could help improving the safety in their

regular activities.

A wide range of technologies have been evaluated for the localization of peo-

ple in outdoor environments in the last few decades, such as (i) global positioning

systems (GPS), (ii) inertial measurement units (IMU), (iii) vision sensors, or a

combination of these. However, localization in indoor environments is still an
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open question due to the complexity of indoor environments (Elnahrawy et al.,

2004; Ladd et al., 2004). On the other hand, robot localization techniques have

achieved good results in indoor environments, even though the use of these tech-

nologies is not feasible for the localization of people on account of the high com-

putational cost of processing the data gathered by the sensors that are used. Thus, a

different type of methodology have been adopted that make use of signal strength

of wireless devices, driven by the large number of devices that make use of it for

communication (Yoo et al., 2014; BÃćce and Pignolet, 2015; Pessin et al., 2014).

A current issue while dealing with signal strength is its vulnerability to inter-

ferences, fading and attenuation. Those characteristics add noise to the signal,

making it somehow difficult to be employed for high accuracy localization sys-

tems. Machine learning techniques, like multilayer artificial neural networks and

support vector machines, among other, have been employed to estimate localiza-

tion due to its inherent learning and generalization capabilities. It is expected that

the learning and generalization capabilities allows the estimation of the localiza-

tion to have a good accuracy despite the noise. Although, as can be seen in the

work by Carvalho and colleagues (Carvalho et al., 2016), the use of a filtering step

(moving average) before the use of the machine learning techniques improves the

accuracy of the system, however, it adds more complexity to the system.

In this article we exploit the use of Convolutional Neural Networks (Con-

vNets) in the task of localization. The main motivation behind the employment of

ConvNets is its inherent ability of feature extraction, which we believe can deal

better with the noise without a filtering step. We evaluate how ConvNets can be
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employed and which are the best topologies that lead to the lowest errors. The

article is organized into the following sections: In Section 2 we describe concepts

about Convolutional Neural Networks. In Sections 3 we present the environment

employed for indoor localization and the proposed ConvNet model that deals with

a time series of signal strength from access points. The results are presented and

discussed in Section 4. We finish the paper presenting the conclusions and direc-

tions for future work.

2. Deep Neural Networks

Before the development of the deep learning field, it was common that big

neural network use to suffer of training inefficiency due to the problem of the

vanishing gradient (Dalto, 2015). Two are the more common neural networks

employed within the deep learning concepts: (i) Convolutional Neural Networks

(ConvNets) and (ii) Recurrent Neural Networks (RNNs).

Convolutional Neural Networks, as described by Lecun, Bottou, Bengio and

Haffner (Lecun et al., 1998), are neural networks that leverage the biological con-

cept of receptive fields. It is often divided in two parts: convolutional layers

followed by a multilayer perceptron layer. The convolutional layer performs in-

herent feature extraction and the MLP layer is responsible for the classification

or regression. ConvNets are commonly employed in tasks such image and sound

classification (Sermanet et al., 2013; Abdel-hamid et al., 2013; Krizhevsky et al.,

2012; LeCun et al., 2015). Recurrent Neural Networks are a second type of arti-

ficial neural networks employed for deep learning process. It is a class of multi-
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Figure 1: The testing environment: There are 3 routers (R1 to R3) which broadcast RSSI signals
and 4 rooms were collections were carried out (C1 to C4). In each room (C1 to C4) nine different
collections were performed taking ≈ 3 to 4 minutes each (a total of 30 minutes in each room, and
2 h taking into account the four rooms). The RSSI are employed as inputs for the machine learning
position estimation.

player perceptron networks in which some neurons have connections with former

neurons, as in a directed cycle; it makes the RNNs to exhibit dynamic temporal

behavior (Sak et al., 2014). RNNs are commonly employed in handwriting recog-

nition or speech recognition (Pham et al., 2014; Graves and Jaitly, 2014). Due to

recurrent connections, it is said that RNNs present temporal relationship among

the inputs, being some sort of memory.

In this work we propose and evaluate Convolutional Neural Networks in the

task of localization due to its inherent ability of feature extraction. Our proposed

ConvNet topology is described in Section 3.

3. Environment and Methods for Indoor Localization

As previously mentioned, in this article we exploit the use of ConvNets to

estimate localization in indoor environment by means of signal strength (RSSI)
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Figure 2: Architecture of the system: a person must have a device that receives RSSI from routers
and employs machine learning to estimate its location.

of wireless nodes. Fig. 1 shows the environment: There are 3 routers (R1 to

R3) which broadcast RSSI signals and 4 rooms were collections were carried out

(C1 to C4). In each room (C1 to C4) nine different collections were performed

taking ≈ 3 to 4 minutes each (a total of 30 minutes in each room, and 2 h taking

into account the four rooms). Each scan of the networks takes approximately

0.4 seconds; hence, in 2 h of collection the dataset for the learning process of

the ConvNet has a total of 17617 records from signal strength. The dataset was

divided in a proportion of 70% for training and 30% for validation.

Figure 2 shows the general architecture of the system where a person must

have a device that receives RSSI from routers and employs machine learning to

estimate its location. Figure 3 shows a simplified model of the system, taking

into account the inputs and outputs of intelligent system. The ConvNet receives

as inputs a time series of signal strength (10 reads) from 3 access points. In this

sense, the ConvNet has an input layer of 30 values. The output layer presents 4

logical neurons, representing each room of interest.
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Figure 3: Simplified model of the inputs and outputs of the ConvNet. The ConvNet receives as
inputs signal strengths and it is trained to output the class related to each room of interest.

Related to the application of the Convolutional Neural Networks, as previously

mentioned, it presents as inputs a time series with 30 values (10 values from 3

routers) and 4 values as outputs (one logical value to each room). Our proposed

ConvNet is build to deal with time series, and is based on the work of by Zheng ans

colleagues Zheng et al. (2014). The initial architecture is represented in Fig. 4 and

it consists of two sets of layers: 1D convolution, 1D Relu and MaxPool; two fully

connected layers with Relu and Dropout between them and an output layer with

SoftMax. Relu was used because it speeds up the training over classical activation

functions Krizhevsky et al. (2012) as sigmoid and hyperbolic tangent was used

Dropout to increase the spread of the network and avoid overfitting Srivastava

et al. (2014).

The learning rate used was 0.001 and momentum of 0.005 using Nesterov Mo-

mentum Sutskever et al. (2013). The amount of trainable parameters ranged from

approximately 1700 to 2000. All of the network weights are initialized randomly.

We evaluated 27 different architectures, taking into account {5, 10, 15} filters

in the first layer, {5, 10, 15} filters in the second layer and 6x6, 12x12, 24x24
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Figure 4: Convolutional Neural Network architecture, displaying the layers and feature maps gen-
erated. Between each feature map is show a layer with the size of the filter. For each the feature
maps, in brackets is the number of filters in the convolution layer and for the MLP layer is the
number of neurons in each layer dense layer.

neurons in the MLP classification layer. Each network was trained with 20,000

epochs and the result aggregates 10 runs of each architecture.

4. Results

Fig. 5 shows the results for the different ConvNet architectures. We can see

that architectures with 5 filters in any convolution layer or 6x6 neurons in the

hidden layers present a large dispersion in the results. All the best sets were

obtained by ConvNets with two convolutional layers with at least 10 filters plus 2

fully connected layers with at least 12x12 neurons each. Taking this into account,

the architecture with 10 filters on both convolutional layers and 12x12 neurons in

each hidden layer (c10c10d12) was considered the most appropriate for the task

of classifying, since it is the smallest architecture that present best classification
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Figure 5: Results of correct classification rates for the evaluated ConvNet topologies. Each line
presents the average of ten runs plus the max and min of the set. In blue we show the best results,
i.e. the ConvNets that presented correct classification rates with lower dispersion. All the best
sets were obtained by ConvNets with two convolutional layers with at least 10 filters plus 2 fully
connected layers with at least 12 neurons each.

rates.

Fig. 6 shows the confusion matrix. It is worthwhile to mention that the errors

occurred in neighbor regions; by means of the confusion matrix we can see the

errors that occurred in regions 1 and 2 (Fig. 1), which represents two neighbor

rooms (Robotics Lab. and Soft Eng. Lab.).

Figure 6: Confusion matrix of the best run of the architecture c10c10d12.
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5. Conclusion and Future work

In this paper we exploited the use of Convolutional Neural Networks to per-

form localization of people in indoors environments. Several architectures were

evaluated seeking to understand which topology could obtain best results. As seen

in this paper, Convolutional Neural Networks are widely used for image classifi-

cation, since it presents an inherent feature extraction characteristic. We employ

the idea of the inherent feature extraction as a noise-removing filter. Our devel-

opments lead to a ConvNet that receives a time series of signal strength values

from different access points and perform classification. The different architec-

tures, with several different layer showed that there are topologies more suitable

to solve the problem.

Future studies should address other Deep Learning concepts, by exploiting Re-

current Neural Nets and Denoising Autoencoders in the task of localization. Other

open question is related to the employed sensors: there is nowadays a plethora of

wireless sensors with different frequencies. In this sense, the question of witch

sensor (or sensors) could provide the best set to improve the accuracy of the sys-

tem is a field that deserves attention.
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