52 research outputs found

    Enhanced product recovery from glycerol fermentation into 3-carbon compounds in a bioelectrochemical system combined with in situ extraction

    Get PDF
    Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams

    Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community

    Get PDF
    Electricity-driven bioproduction processes such as microbial electrosynthesis enable converting CO2 and organic feedstocks into target chemicals with minimal addition of external chemicals. Bioelectrochemical CO2 conversion to (mainly) acetate has mostly been demonstrated in batch processes. Continuous reactor operation and the operational parameters associated with it have received limited attention. Here, we demonstrate that improving bioelectrochemical reactor design to a higher cathode surface to volume ratio results in an enhanced acetate titer; 5.7 +/- 0.74 g L-1 (11.5 +/- 6.6 g m(-2) d(-1)) in galvanostastically controlled (-5 A m(-2) (cathode)) batch reactors with a mixed microbial community. A long-term and stable bioproduction process could be established in which hydraulic residence time (HRT) affected the product patterns as well as the acetate production rate, up to 21 g m(-2) d(-1) for an HRT of 3.3d (63% coulombic efficiency) was achieved; the highest reported thus far in a continuous process. The specific energy input per kilogram of acetic acid produced during batch and continuous processes (HRT: 3.3d) was 29 +/- 0.7 and 16 +/- 1.3 kWhel kg(-1), respectively. Butyrate and isopropanol were the other major biochemicals produced at maximum rates of 3.7 and 3.3 g m(-2) d(-1) (18.6% and 21.8% of the electrons, respectively) leading to titers of 0.67 and 0.82 g L-1 during the continuous process. This is the first report on the production of a secondary alcohol (isopropanol), using a mixed culture, in CO2 fed systems. The product ratios between these organics could be steered based on operational pH and HRTs. Operating reactors at an HRT of 5 d at pH 5 led to stable production of butyrate (1.9 +/- 0.6 g m(-2) d(-1)) and isopropanol (1.17 +/- 0.34 g m(-2) d(-1)). Cyclic voltammetry suggested an "ennoblement" of the cathode over time, shifting the onset for reductive current by more than 150 mV. Microbial community analysis revealed Acetobacterium as the main bacterial group involved in CO2 reduction to acetate, and the presence of diverse bacterial groups in response to different operational conditions

    Assessment of carbon loss related to Soil loss in the tropical watershed of Maharashtra, India

    Get PDF
    Soil carbon pools have a significant impact on the global carbon cycle and soil erosion caused by natural or human activities is one of the main drivers of changes in soil carbon sequestration. The present study aimed to estimate the carbon loss associated with soil loss in the watershed using remote sensing and GIS techniques. The study was carried out at the Central MPKV Campus Watershed, Rahuri, located in the rain shadow region of the Maharashtra state, India. The soil loss from the watershed was estimated using USLE model. The soil loss and carbon loss from the watershed were estimated before the implementation of conservation measures and after the implementation of conservation measures. It was found that the average annual soil loss from the watershed before and after conservation measures was 18.68 t/ha/yr and 9.41 t/ha/yr, respectively. Carbon loss was determined by soil loss rate, organic carbon content and the carbon enrichment ratio. The carbon loss from the watershed before and after conservation measures was 348.71 kgC/ha/yr and 205.52 kgC/ha/yr. The findings revealed that soil and carbon erosion was very severe on steep slopes without conservation measures and with limited vegetation cover. It was found that by reducing the carbon loss associated with soil loss, soil conservation measures not only aid in the conservation of natural resources but also serve as a climate change mitigation measure

    Calibration of the CMS hadron calorimeters using proton-proton collision data at root s=13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of theCMSetector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities vertical bar eta vertical bar ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Engineering electrodes for microbial electrocatalysis

    No full text
    Microbial electrocatalysis refers to the use of microorganisms to catalyze electrode reactions. Many processes have been developed on this principle, ranging from power generation to CO2 conversion using bioelectrochemical systems. The nature of the interface between the microorganisms and the electrodes determines the functioning and efficiency of these systems. This interface can be manipulated in terms of chemical and topographical features to better understand the interaction at nanometer and micrometer scales. Here we discuss how the electrode surface topography and chemistry impact the microorganism-electrode interaction both for direct and indirect electron transfer mechanisms. It appears that composite materials that combine high conductivity with excellent biocompatibility are most attractive towards application. In most cases this implies a combination of a metallic backbone with a carbon coating with a defined topography and chemistry

    Microbial electrosynthesis with an enriched mixed homoacetogenic culture

    No full text
    The bioproduction of chemicals such as acetate from CO2 with mixed microbial inoculum sources is affected by methanogens that compete with the acetogenic bacteria for electron donors. The practice of using methanogen inhibitors in the bioelectrochemical systems (BESs) is not a sustainable approach. A prior enrichment of the homoacetogens and the use of such enriched culture can be considered as a better strategy. Herein, an enriched homoacetogenic culture is under investigation as an inoculum for microbial electrosynthesis (MES) starting from CO2. Initial observations revealed the production of acetate (up to 300 mg/L) and other volatile fatty acids (VFAs) such as formate, propionate and butyrate in low concentration in fed-batch BES reactors. Methane production was suppressed throughout the experiment. Further validation of the observations, performance improvement, efficiency tests, electron uptake mechanisms and microbial community analysis are the objectives of ongoing work
    corecore