

Continuous and long-term electricity-driven production of acetate from CO₂ using a mixed microbial community

Sunil A. Patil, Jan B.A. Arends, Kun Guo, Korneel Rabaey

Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, *B-9000 Ghent, Belgium;* e-mail: sunil.patil@ugent.be

MICROBIAL ELECTROSYNTHESIS

EXPERIMENTAL

• pH decrease (<6.0)

6

Microbial inoculum: Enriched mixed culture at autotrophic conditions (Patil et al. EST 2015 LabMET)

OBJECTIVES

> Improve the cathode:catholyte ratio and mixing in reactors in order to improve the acetate titer and production rates \triangleright Investigate the continuous and long term MES platform for CO₂ to acetate

RESULTS

HRT influences electron recovery in acetate and H₂

ACKNOWLEDGEMENTS

KEY OBSERVATIONS

- Improved acetate titers (up to. 6.4 g L⁻¹) by improving cathode to cathoyte ratio and mixing in reactors
- Long term, continuous and stable acetate production at higher rates (than batch reactors) for >6 months
- ➢ Higher volumetric acetate production rates up to 1 g L⁻¹_{catholyte} d⁻¹ at HRT 3 d Robust performance by the microbial community