11 research outputs found

    Vesiclepedia 2019 : a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles

    Get PDF
    Extracellular vesicles (EVs) are membranous vesicles that are released by both prokaryotic and eukaryotic cells into the extracellular microenvironment. EVs can be categorised as exosomes, ectosomes or shedding microvesicles and apoptotic bodies based on the mode of biogenesis. EVs contain biologically active cargo of nucleic acids, proteins, lipids and metabolites that can be altered based on the precise state of the cell. Vesiclepedia (http://www.microvesicles.org) is a web-based compendium of RNA, proteins, lipids and metabolites that are identified in EVs from both published and unpublished studies. Currently, Vesiclepedia contains data obtained from 1254 EV studies, 38 146 RNA entries, 349 988 protein entries and 639 lipid/metabolite entries. Vesiclepedia is publicly available and allows users to query and download EV cargo based on different search criteria. The mode of EV isolation and characterization, the biophysical and molecular properties and EV-METRIC are listed in the database aiding biomedical scientists in assessing the quality of the EV preparation and the corresponding data obtained. In addition, FunRich-based Vesiclepedia plugin is incorporated aiding users in data analysis

    Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis

    Get PDF
    The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors

    A novel community driven software for functional enrichment analysis of extracellular vesicles data.

    Get PDF
    Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines

    Combinatorial treatment of curcumin or silibinin with doxorubicin sensitises high-risk neuroblastoma

    No full text
    Aim: Neuroblastoma is a pediatric cancer of the sympathetic nervous system. Using various parameters including stage of the disease, amplification status of N-Myc, DNA index and histopathology, neuroblastoma can be stratified into low- and high-risk groups. Recent advances in treatment have significantly improved the survival rate of low-risk neuroblastoma patients. However, the overall survival rate of high-risk neuroblastoma group, especially N-Myc amplified patients, is poor. Moreover, the survivors of both low- and high-risk neuroblastoma manifest adverse side effects to chemotherapy and thus their quality of life is impaired. Considering all these factors, there is an urgent need to develop therapeutic strategies with natural compounds to improve the survival rate and to reduce the side effects. In this study, we hypothesised that the mesenchymal nature of neuroblastoma cells is a reason, at least in part, for the aggressive and treatment resistant phenotype.Methods: In order to validate our hypothesis, we used publicaly available RNA-Seq data, in vitro assays and xenograft mouse models.Results: Using a combinatorial treatment of mesenchymal-to-epithelial inducers (curcumin or silibinin) with doxorubicin significantly increased the cell death in a panel of neuroblastoma cells in vitro. Follow up analysis in vivo, confirmed the therapeutic benefit of utilising the combination of curcumin with doxorubicin. The combinatorial therapy significantly reduced the tumor burden and increased the survival of mice implanted with high-risk neuroblastoma cells.Conclusion: Taken together, this study shows the efficacy of using curcumin in combination with doxorubicin to improve the survival rate and has the potential to enhance the quality of life of neuroblastoma patients

    Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size

    No full text
    Apoptotic bodies (ApoBDs), which are large extracellular vesicles exclusively released by apoptotic cells, possess therapeutically exploitable properties including biomolecule loadability and transferability. However, current limited understanding of ApoBD biology has hindered its exploration for clinical use. Particularly, as ApoBD-accompanying cargoes (e.g., nucleic acids and proteins) have major influence on their functionality, further insights into the mechanism of biomolecule sorting into ApoBDs are critical to unleash their therapeutic potential. Previous studies suggested pannexin 1 (PANX1) channel, a negative regulator of ApoBD biogenesis, can modify synaptic vesicle contents. We also reported that trovafloxacin (a PANX1 inhibitor) increases proportion of ApoBDs containing DNA. Therefore, we sought to define the role of PANX1 in regulating the sorting of nuclear content into ApoBDs. Here, using flow cytometry and label-free quantitative proteomic analyses, we showed that targeting PANX1 activity during apoptosis, via either pharmacological inhibition or genetic disruption, resulted in enrichment of both DNA and nuclear proteins in ApoBDs that were unexpectedly smaller in size. Our data suggest that PANX1, besides being a key regulator of ApoBD formation, also functions as a negative regulator of nuclear content packaging and modulator of ApoBD size. Together, our findings provide further insights into ApoBD biology and form a novel conceptual framework for ApoBD-based therapies through pharmacologically manipulating ApoBD contents

    ExoCarta: A Web-Based Compendium of Exosomal Cargo

    Full text link
    Estate subdivision of 165 acres laid out to accommodate topography and discourage through traffic.general view, view of hedge-lined property, from street, 198
    corecore