213 research outputs found

    Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    Get PDF
    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general knowledge in the area of amino acid metabolism. The three well-known lactic acid bacteria that were used in these studies were Streptococcus thermophilus, Lactococcus lactis and Lactobacillus plantarum. The complete genomes of all these model bacteria have been sequenced and annotated in detail. Comparative experimental and in silico studies of Streptococcus thermophilus with the other two lactic acid bacteria, revealed the low degree of amino acid auxotrophies of this species; it only needs two amino acids for (minimal) growth and this strain is able to produce a varied amount of flavors. Lactococcus lactis and Lactobacillus plantarum require more amino acids and produce fewer flavors than S. thermophilus. Furthermore, S. thermophilus has a simple primary metabolism; homolactic growth is the only possible route under anaerobic conditions and, remarkably, it does not have a complete pentose phosphate pathway in contrast to the other two studied bacteria. This latter property has important consequences for the redox metabolism of S. thermophilus and particularly its ability to produce NADPH. A genome-scale metabolic model was developed and predicted that amino acid metabolism, and especially glutamate degradation, and citrate metabolism are the most obvious alternatives for NADPH generation. Several of these predictions were confirmed by constructing a glutamate dehydrogenase mutant of S. thermophilus. This mutant revealed theimportance of the citrate pathway (and other amino acid degradation pathways) in NADPH generation. A comparative and functional genomics study of the three lactic acid bacteria showed that amino acid depletion not only affects amino acid metabolism, but also flavor formation and overall growth. The comparative genomics approach presented in this thesis can be used to understand the amino acid metabolism of different lactic acid bacteria and their potential to produce flavors under different conditions. Finally, it can be applied for optimization of industrial fermentation

    Input output linearization on the underactuated H-drive

    Get PDF

    Cloning and characterization of the <i>Drosophila </i>homolog of the xeroderma pigmentosum complementation-group B correcting gene, <i>ERCC3</i>

    Get PDF
    Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5′ untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA transfection of ERCC3Dm into human xeroderma pigmentosum (c.g. B) fibroblasts and group 3 rodent mutants did not yield detectable correction. One of the possibilities to explain these negative findings is that the D.melanogaster protein may be unable to function in a mammalian repair context.</p

    Assistive technology for memory support in dementia

    Get PDF
    BACKGROUND: The sustained interest in electronic assistive technology in dementia care has been fuelled by the urgent need to develop useful approaches to help support people with dementia at home. Also the low costs and wide availability of electronic devices make it more feasible to use electronic devices for the benefit of disabled persons. Information Communication Technology (ICT) devices designed to support people with dementia are usually referred to as Assistive Technology (AT) or Electronic Assistive Technology (EAT). By using AT in this review we refer to electronic assistive devices. A range of AT devices has been developed to support people with dementia and their carers to manage their daily activities and to enhance safety, for example electronic pill boxes, picture phones, or mobile tracking devices. Many are commercially available. However, the usefulness and user-friendliness of these devices are often poorly evaluated. Although reviews of (electronic) memory aids do exist, a systematic review of studies focusing on the efficacy of AT for memory support in people with dementia is lacking. Such a review would guide people with dementia and their informal and professional carers in selecting appropriate AT devices. Objectives PRIMARY OBJECTIVE: To assess the efficacy of AT for memory support in people with dementia in terms of daily performance of personal and instrumental activities of daily living (ADL), level of dependency, and admission to long-term care. SECONDARY OBJECTIVE: To assess the impact of AT on: users (autonomy, usefulness and user-friendliness, adoption of AT); cognitive function and neuropsychiatric symptoms; need for informal and formal care; perceived quality of life; informal carer burden, self-esteem and feelings of competence; formal carer work satisfaction, workload and feelings of competence; and adverse events. SEARCH METHODS: We searched ALOIS, the Specialised Register of the Cochrane Dementia and Cognitive Improvement Group (CDCIG), on 10 November 2016. ALOIS is maintained by the Information Specialists of the CDCIG and contains studies in the areas of dementia prevention, dementia treatment and cognitive enhancement in healthy people. We also searched the following list of databases, adapting the search strategy as necessary: Centre for Reviews and Dissemination (CRD) Databases, up to May 2016; The Collection of Computer Science Bibliographies; DBLP Computer Science Bibliography; HCI Bibliography: Human-Computer Interaction Resources; and AgeInfo, all to June 2016; PiCarta; Inspec; Springer Link Lecture Notes; Social Care Online; and IEEE Computer Society Digital Library, all to October 2016; J-STAGE: Japan Science and Technology Information Aggregator, Electronic; and Networked Computer Science Technical Reference Library (NCSTRL), both to November 2016; Computing Research Repository (CoRR) up to December 2016; and OT seeker; and ADEAR, both to February 2017. In addition, we searched Google Scholar and OpenSIGLE for grey literature. SELECTION CRITERIA: We intended to review randomised controlled trials (RCTs) and clustered randomised trials with blinded assessment of outcomes that evaluated an electronic assistive device used with the single aim of supporting memory function in people diagnosed with dementia. The control interventions could either be 'care (or treatment) as usual' or non-technological psychosocial interventions (including interventions that use non-electronic assistive devices) also specifically aimed at supporting memory. Outcome measures included activities of daily living, level of dependency, clinical and care-related outcomes (for example admission to long-term care), perceived quality of life and well-being, and adverse events resulting from the use of AT; as well as the effects of AT on carers. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all titles and abstracts identified by the search. MAIN RESULTS: We identified no studies which met the inclusion criteria. Authors' conclusions This review highlights the current lack of high-quality evidence to determine whether AT is effective in supporting people with dementia to manage their memory problems

    The Drosophila Melanogaster RAD54 Homolog, DmRAD54, Is Involved in the Repair of Radiation Damage and Recombination

    Get PDF
    The RAD54 gene of Saccharomyces cerevisiae plays a crucial role in recombinational repair of double-strand breaks in DNA. Here the isolation and functional characterization of the RAD54 homolog of the fruit fly Drosophila melanogaster, DmRAD54, are described. The putative Dmrad54 protein displays 46 to 57% identity to its homologs from yeast and mammals. DmRAD54 RNA was detected at all stages of fly development, but an increased level was observed in early embryos and ovarian tissue. To determine the function of DmRAD54, a null mutant was isolated by random mutagenesis. DmRAD54-deficient flies develop normally, but the females are sterile. Early development appears normal, but the eggs do not hatch, indicating an essential role for DmRAD54 in development. The larvae of mutant flies are highly sensitive to X rays and methyl methanesulfonate. Moreover, this mutant is defective in X- ray-induced mitotic recombination as measured by a somatic mutation and recombination test. These phenotypes are consistent with a defect in the repair of double-strand breaks and imply that the RAD54 gene is crucial in repair and recombination in a multicellular organism. The results also indicate that the recombinational repair pathway is functionally conserved in evolution

    Cloning and characterization of the <i>Drosophila </i>homolog of the xeroderma pigmentosum complementation-group B correcting gene, <i>ERCC3</i>

    Get PDF
    Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5′ untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA transfection of ERCC3Dm into human xeroderma pigmentosum (c.g. B) fibroblasts and group 3 rodent mutants did not yield detectable correction. One of the possibilities to explain these negative findings is that the D.melanogaster protein may be unable to function in a mammalian repair context.</p

    Arabidopsis RecQl4A suppresses homologous recombination and modulates DNA damage responses

    Get PDF
    The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecQ is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in Arabidopsis. Here we report on the functional analysis of the Arabidopsis RecQl4A gene. Ectopic expression of Arabidopsis RecQl4A in yeast RecQ-deficient cells suppressed their hypersensitivity to the DNA-damaging drug methyl methanesulfonate (MMS) and enhanced their rate of homologous recombination (HR). Analysis of three recQl4A mutant alleles revealed no obvious developmental defects or telomere deregulation in plants grown under standard growth conditions. Compared with wild-type Arabidopsis, the recQl4A mutant seedlings were found to be hypersensitive to UV light and MMS, and more resistant to mitomycin C. The average frequency of intrachromosomal HR in recQl4A mutant plants was increased 7.5-fold over that observed in wild-type plants. The data reveal roles for Arabidopsis RecQl4A in maintenance of genome stability by modulation of the DNA damage response and suppression of HR.

    WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks

    Get PDF
    DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery

    Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences

    Get PDF
    DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.4 kb in length. We further show that SSA between divergent repeats (homeologous SSA) is suppressed in cell cultures and in vivo in a sensitive manner, recognizing sequence divergences smaller than 0.5%. Finally, we demonstrate that the suppression of homeologous SSA depends on the Bloom helicase (Blm), encoded by the Drosophila gene mus309. Suppression of homeologous recombination is a novel function of Blm in ensuring genomic integrity, not described to date in mammalian systems. Unexpectedly, distinct from its function in Saccharomyces cerevisiae, the mismatch repair factor Msh2 encoded by spel1 does not suppress homeologous SSA in Drosophila
    • …
    corecore