157 research outputs found
Adsorption of Arsenic from Aqueous Solutions by Iron Filings and the Effect of Magnetic Field
Aims: Arsenic contamination of natural water resources has become an important environmental problem in the world. The adsorption method by iron filings adsorbent or zero-valent iron was used. The study aimed to evaluate the efficiency of iron filings in arsenite removal from polluted water and to investigate the effect of magnetic field on the process. Materials & Methods: This interventional study was conducted in synthetically polluted water samples with certain arsenic concentrations. With regard to the initial arsenic concentration (0.5 and 2mg/l), iron filings dosages (0, 2.5 and 5g/l), contact times (5, 10 and 15min) and considering the samples before and after magnetic column, 108 samples were prepared. Data was analyzed by paired sample T and one-way ANOVA tests. Findings: The highest mean of removal efficiency at the initial arsenic concentration of 0.5mg/l was seen at the iron filings of 5g/l and 10min contact time (87.7±10.0) and at the initial arsenic concentration of 2mg/l was seen at the iron filings of 5g/l and 15min contact time (86.3±8.4). At the initial arsenic concentration of 0.5mg/l, magnetic field increased the removal efficiency of arsenite at the iron filings dosage of 0g/l and decreased it at the iron filings dosage of 5g/l. The same happened at the initial arsenic concentration of 2mg/l. Conclusion: Arsenic is reduced from the water samples with the iron filings dosage of 5g/l at natural pH. Magnetic field increases the arsenic removal efficiency in the absence of the iron filings and decreases the arsenic removal efficiency in the presence of the iron filings
AS-773-13 Resolution of Commendation for Margaret Camuso
Commends Margaret Camuso for her service to the Academic Senate
RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies
Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
Ghost Condensation and a Consistent Infrared Modification of Gravity
We propose a theoretically consistent modification of gravity in the
infrared, which is compatible with all current experimental observations. This
is an analog of Higgs mechanism in general relativity, and can be thought of as
arising from ghost condensation--a background where a scalar field \phi has a
constant velocity, = M^2. The ghost condensate is a new kind of
fluid that can fill the universe, which has the same equation of state, \rho =
-p, as a cosmological constant, and can hence drive de Sitter expansion of the
universe. However, unlike a cosmological constant, it is a physical fluid with
a physical scalar excitation, which can be described by a systematic effective
field theory at low energies. The excitation has an unusual low-energy
dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it
gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin
dependent force. In the ghost condensate, the energy that gravitates is not the
same as the particle physics energy, leading to the possibility of both sources
that can gravitate and antigravitate. The Newtonian potential is modified with
an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time
scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking
cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2
Stylized (Arte) Facts on Sectoral Inflation
Research on disaggregate price indices has found that sectoral shocks generate the bulk of sectoral inflation variance, but no persistence. Aggregate shocks, by contrast, are the root of sectoral inflation persistence, but have negligible relative variance. We argue that these findings are largely an artefact of using overly simple factor models to characterize inflation. Sectoral inflation series are subject to particular features such as sales and item substitutions. In factor models, these blow up the variance of sectoral shocks, while reducing their persistence. Controlling for such effects, we find that inflation variance is driven by both aggregate and sectoral shocks. Sectoral shocks, too, generate substantial inflation persistence. Both findings contrast sharply with earlier evidence from factor models. However, these results align well with recent micro evidence. This has implications for the foundations of price stickiness, and provide quantitative inputs for calibrating models with sectoral heterogeneity
Interglacials of the last 800,000 years
Interglacials, including the present (Holocene) period, are warm, low land ice extent (high sea level), end-members of glacial cycles. Based on a sea level definition, we identify eleven interglacials in the last 800,000 years, a result that is robust to alternative definitions. Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (last interglacial) and 11c (~400 ka ago) were globally strong (warm), while MIS 13a (~500 ka ago) was cool at many locations. A step change in strength of interglacials at 450 ka is apparent only in atmospheric CO and in Antarctic and deep ocean temperature. The onset of an interglacial (glacial termination) seems to require a reducing precession parameter (increasing Northern Hemisphere summer insolation), but this condition alone is insufficient. Terminations involve rapid, nonlinear, reactions of ice volume, CO, and temperature to external astronomical forcing. The precise timing of events may be modulated by millennial-scale climate change that can lead to a contrasting timing of maximum interglacial intensity in each hemisphere. A variety of temporal trends is observed, such that maxima in the main records are observed either early or late in different interglacials. The end of an interglacial (glacial inception) is a slower process involving a global sequence of changes. Interglacials have been typically 10–30 ka long. The combination of minimal reduction in northern summer insolation over the next few orbital cycles, owing to low eccentricity, and high atmospheric greenhouse gas concentrations implies that the next glacial inception is many tens of millennia in the future.This paper arose as a result of a succession of workshops of the Past Interglacials Group (PIGS), sponsored by the Past Global Changes Project (PAGES). The authors acknowledge the contributions of all participants at those workshops, of whom the listed authors are only a subset. Numerous funding agencies have contributed to the work of this paper including NSF (USA), NERC and The Royal Society (UK), F.R.S –FNRS (Belgium), and SNF (Switzerland). Most data described in this paper are available through relevant data repositories, http://www.ncdc.noaa.gov/data-access/paleoclimatology-data and www.pangaea.de in particular. In addition, the datasets from which Tables 2 and 3 were derived have been compiled into a spreadsheet as a supplement to this paper. Insolation data for Figure 5 can be calculated using programs available at ftp://ftp.elic.ucl.ac.be/berger/berger78/ and ftp://ftp.elic.ucl.ac.be/berger/ellipticintegrals/. This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015RG00048
RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies
Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe
The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio
- …