391 research outputs found

    Medication use in pregnancy: a cross-sectional, multinational web-based study

    Get PDF
    Objectives: Intercountry comparability between studies on medication use in pregnancy is difficult due to dissimilarities in study design and methodology. his study aimed to examine patterns and factors associated with medications use in pregnancy from a multinational perspective, with emphasis on type of medication utilised and indication for use. Design: Cross-sectional, web-based study performed within the period from 1 October 2011 to 29 February 2012. Uniform collection of drug utilisation data was performed via an anonymous online questionnaire. Setting: Multinational study in Europe (Western, Northern and Eastern), North and South America and Australia. Participants: Pregnant women and new mothers with children less than 1 year of age. Primary and secondary outcome measures: Prevalence of and factors associated with medication use for acute/short-term illnesses, chronic/long-term disorders and over-the-counter (OTC) medication use. Results: The study population included 9459 women, of which 81.2% reported use of at least one medication (prescribed or OTC) during pregnancy. Overall, OTC medication use occurred in 66.9% of the pregnancies, whereas 68.4% and 17% of women reported use of at least one medication for treatment of ute/short-term illnesses and chronic/long-term disorders, respectively. The extent of self-reported medicated illnesses and types of medication used by indication varied across regions, especially in relation to urinary tract infections, depression or OTC nasal sprays. Women with higher age or lower educational level, housewives or women with an unplanned pregnancy were those most often reporting use of medication for chronic/long-term disorders. Immigrant women in Western (adjusted OR (aOR): 0.55, 95% CI 0.34 to 0.87) and Northern Europe (aOR: 0.50, 95% CI 0.31 to 0.83) were less likely to report use of medication for chronic/long-term disorders during pregnancy than nonimmigrants. Conclusions: In this study, the majority of women in Europe, North America, South America and Australia used at least one medication during pregnancy. There was a substantial inter-region variability in the types of medication used

    Automated image analysis system for studying cardiotoxicity in human pluripotent stem cell-Derived cardiomyocytes

    Get PDF
    BackgroundCardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers.ResultsIn this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively.ConclusionsOur results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous α-actinin signals.Computer Systems, Imagery and MediaAlgorithms and the Foundations of Software technolog

    Standardized, Modular Parallelization Platform for Microfluidic Large-Scale Integration Cell Culturing Chips

    Get PDF
    Standardized high-throughput devices for microfluidic cell cultures are necessary to translate discoveries made in academia to applications in pharmaceutical industry. Here we present a platform with integrated pneumatic valves for standardized parallelization of multichamber chips (SPARC). In total, 192 chambers divided over three microfluidic building blocks (MFBBs) can be filled and purged with spatial and temporal independence. The dimensions of both the MFBB and the platform are standardized and thus compatible with common lab equipment. We characterize the valves at different pumping and gate pressures and show that the MFBBs are suitable for culturing human umbilical vein endothelial cells (HUVECs)

    Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts

    Get PDF
    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role

    TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

    Get PDF
    Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+) -regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure

    Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes

    Get PDF
    Transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) for cardiac regeneration is hampered by the formation of fibrotic tissue around the grafts, preventing electrophysiological coupling. Investigating this process, we found that: (1) beating hESC-CM in vitro are embedded in collagens, laminin and fibronectin, which they bind via appropriate integrins; (2) after transplantation into the mouse heart, hESC-CM continue to secrete collagen IV, XVIII and fibronectin; (3) integrin expression on hESC-CM largely matches the matrix type they encounter or secrete in vivo; (4) co-transplantation of hESC-derived endothelial cells and/or cardiac progenitors with hESC-CM results in the formation of functional capillaries; and (5) transplanted hESC-CM survive and mature in vivo for at least 24 weeks. These results form the basis of future developments aiming to reduce the adverse fibrotic reaction that currently complicates cell-based therapies for cardiac disease, and to provide an additional clue towards successful engraftment of cardiomyocytes by co-transplanting endothelial cells
    corecore