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1 Introduction

This book presents an approach for specification based object oriented (OO)
development, including all corresponding tests, exemplified on, but relatively
independent of, Java. Besides the conceptuel knowledge needed, the procedural
knowledge [11] of how to develop the specifications, implementation and tests
is treated. The description of ‘how to’ is what we call Procedural Guidance.
The guidance scaffolds students to achieve proficiency in a flexible process that
installs quality awareness and improves software quality. In the development
approach specifications, code and tests are developed in an integrated fashion:
the focus is on specifications as crucial to achieve quality.

Important ingredients in software quality assurance are artifacts like anno-
tated code, where annotations include specifications, and tests. To obtain these
artifacts, a structured development method is a natural way to proceed. Tools
may support such an approach. All of these exist in various concrete forms; the
challenge is to foster their use in a process that enhances software quality. This
is where Procedural Guidance comes in.

The right piece of guidance for the development of the artifacts must be
provided to the student at the appropriate point in the development. In class-
room education and even more so in current online education, where instructors
and students are less directly interacting, this is challenging. A distinguishing
feature of our approach is that the artifacts are made explicit and that for each
of the artifacts corresponding activities that produce these are identified. Pro-
cedural Guidance is then given as to when and how to perform the activities
to assure the quality of that artifact. This in contrast with classical approaches
that merely list obligations for code and tests, and leave it to the student to
fulfill these.

The Procedural Guidance is quite detailed, but not tied to a specific, direc-
tive development method. E.g., there is guidance as to what the relationships
between the various artifacts are and at which point in the development activi-
ties are performed, and how, but the order in which activities are performed is
quite flexible.

The Procedural Guidance is an educational device: it guides the student
towards proficiency in the development process, and then, when internalized,
can be regarded as scaffolding and left behind.

The presentation of the approach aims to enable a teacher to use the Proce-
dural Guidance with existing courses. The book can also be used by students
to assist in the understanding and application of the approach.

The book is organized as follows. In the Overview section 2 the role and
consequences of Procedural Guidance for the program development process are
introduced, without going into the specific, concrete guiding procedures that
are the subject proper of the book. In particular, in this section the artifacts,
the activities and the relationships between them are briefly introduced. Sec-
tion 3 addresses some aspects of the approach and section 4 discusses some
concepts used. Sections 5 up to and including 8 present the Procedural Guid-
ance, exemplified on, essentially, the development of one class including testing.
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The approach also addresses robustness, the ability of programs to cope with
unintended situations during execution. This is done in Section 9. Section 10
extends the approach to structures of more classes. The book concludes with
an Appendix A which contains suggestions for teachers as to how to apply the
approach in an educational setting.
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2 Overview of the approach

Procedural Guidance for specification based OO development is the subject of
this book.

A program asked for in a programming assignment is obtained as the re-
sult of program development. This is a complex, difficult process that requires
knowledge, skill and creativity.

Object-oriented programming (OOP) is a programming paradigm that en-
ables object-oriented development that deals with complexity in a specific, ef-
fective manner, using the structuring provided by OO languages.

Procedural guidance is guidance to achieve proficiency in some complex pro-
cess towards some complex goal. The guidance is procedural in that it does not
address the process at a conceptual level but makes explicit what the relevant
activities in the process are and provides stepwise advice for performing these.
The aim is to achieve proficiency in the process, as internalized skills; the guid-
ance can then be left behind as temporary scaffolding. Procedural guidance is
different from a method: the guidance engenders general, flexible proficiency in
a process, whereas a method is more prescriptive, providing precisely defined op-
erations, to be carried out in a fixed order to achieve specific goals. Procedural
guidance is largely independent of specific methods: a method can benefit from
and further structure the application of skills acquired through the guidance.

Subsection 2.1 introduces the artifacts into which program code, descriptions
of behavior and tests that figure in the development are organized, and the re-
lationships between them. Subsection 2.2 introduces the activities that produce
the artifacts, and the relationships between them. This section also provides
some idea about how procedural guidance applies to navigate between activities
(macro guidance) and, inside activities, how to perform steps in developing the
various artifacts (micro guidance).

2.1 The artifacts

A program for a programming assignment, code, must, when run, provide be-
havior as required in the assignment. The development of a program involves at
various stages in the development intermediate code, specifications of required
behavior of code, and establishing that behavior of code satisfies specifications.
Satisfaction can be established in various ways: the approach focuses on tests.

In the approach artifacts are developed that lead to a program for the as-
signment. In object-oriented development two ways to deal with complexity are
modularity and views: these underly the choice and form of the artifacts.

2.1.1 Modularity

Modularity deals with complexity by partitioning a program into parts have high
cohesion within parts and low coupling between parts, and hence can each be
developed relatively independently. The limitation of the interaction is enforced
through encapsulation.
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OOP employs the modularity provided by OO languages to design a program
as composed of parts that are high in cohesion and low in coupling: classes. In
OOP a program is a set of classes. When a program is run, from the classes
objects are instantiated that are linked by references and collaborate through
method calls. Classes are further structured by decomposition of storage, in
attributes, and decomposition and abstraction of manipulation, in methods.
Methods also enable abstraction of storage. Encapsulation is provided through
access control: scoping and access modifiers.

The approach exploits the OO modularity by taking the class as the unit of
development and using for its development the structuring OO provides.

For each class there are in the development specifications that describe re-
quired behavior, code that, when run, produces behavior and tests that test
whether code produces specified behavior. The specifications are attached to
the corresponding pieces of code, i.e., to the class as a whole and to methods.
Hence the specifications are called annotation of the code.

The first artifact, for each class X, is therefore the class itself.

� X consists of annotated code (AC).

– Code (C), structured using OO syntax.

– Annotation (A), specifications, integrated in C, attached to the cor-
responding pieces of C, following the structure of C.

To establish that C satisfies A, tests are provided:
The second artifact, for each class X, is therefore the test class XTest.

� XTest consists of tests (T).

– For each specification in the AC test methods that test the corre-
sponding code.

– The test method are JUnit test methods, with test values and the
required result value, that return a verdict.

So for each class there are two artifacts, referred to as AC+T. T and AC are
separate artifacts, T are run on C.

2.1.2 Views

Orthogonal to the modularization, views deal with complexity by presenting
what, and in which terms, at increasing levels of detail is conceived about the
program.

OOP employs three views on the AC+T: the External View, corresponding
to the perspective of an external user (the functionality provided by the pro-
gram to a user or re-user of the class), the Internal View, corresponding to the
perspective of a developer (the internal OO structure of the program), and the
Annotated Code View, corresponding to the perspective of a writer of code (the
statement, including method calls, level).
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The approach exploits the views to develop the AC+T for a class incremen-
tally.

For the AC, the three views are three artifacts, called by the name of the
view: External View, Internal View and Annotated Code View. During the
development the three artifacts build upon each other: incrementally and iter-
atively the AC is developed. The three artifacts are therefore developed as just
one, growing, artifact. When the AC is complete, the views can be regarded
as projections of the AC. It is quite possible to jump forward and backward
between views during the development. The only restriction is, that develop-
ment of a view cannot be considered finished before the view it builds on is
finished, i.e., the External View must be finished before the Internal View can
be finished, and the Internal View must be finished before the Annotated Code
View can be finished.

The three artifacts for the AC are as follows.

� External View. The start of the development of the AC

– Signatures of the public methods.

– Specification of the behavior of the methods in terms of the domain
(and the parameters and returns).

– Invariants for the domain variables.

� Internal View. Added to the AC so far are the following:

– Attributes.

– Signatures of all methods.

– Specification of the behavior of the methods in terms of the attributes
and parameters.

– Invariants for the attributes.

– Representation relations between attributes and domain variables.

� Annotated Code View. Added to the AC so far are the following:

– Code and annotation for the methods in terms of attributes and local
variables (including method calls).

For the T, the three views also lead to three artifacts. Tests apply to the
code and the specified behavior as provided in the corresponding view on the
AC. The three artifacts are called External Tests, Internal Tests and Code
Tests. Again, during the development the three artifacts build upon each other:
incrementally and iteratively the T is developed. These three artifacts build
upon each other but are developed with the information in the corresponding
view on the AC. Hence the External View must be finished before the External
Tests can be finished, the Internal View must be finished before the Internal
Tests can be finished, and the AC must be finished before the Code Tests can
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be finished. Again it is quite possible to jump forward and backward between
artifacts during the development.

The three artifacts for the AC are as follows.
The additional tests are tests for additional methods, e.g., private methods

in the Internal View that were not present in the External view. Additional test
can also be extra or more stringent tests for methods that were already tested:
a specification for a method may in the Internal View well be more demanding
than in the External View. Furthermore, in the Annotated Code View code
information about crucial features of the code of a method may be reason for
adding specific test cases to the code test for that method.

� External Tests. Start of the T:

– For each specification in the External View test method for that
specification.

� Internal Tests. Added to the T so far are the following:

– For each specification in the Internal View a test method for that
specification. In case such a test method already exists in the Exter-
nal Tests it may be extended with additional test cases to reflect a
sharpening of the specification.

� Code Tests. Added to the T so far are the following:

– For each specification in the Internal View a test method with tests
for that specification. The test method in the Internal Tests may be
extended with additional test cases to provide code coverage and to
check preconditions of called methods.

Figure 1 shows the six artifacts and the needs relation between them: x→ y.
y needs x, if y can only be finished after x is finished.

Figure 1: The Artifacts
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2.2 The activities

The activities are where the detailed Procedural Guidance for their construction
is provided. The activities are related in several ways to artifacts, and there are
also relationships between activities themselves.

For the construction of the External View and the Internal View we distin-
guish the activities Design (structure, signatures) and Specification (behavior,
specifications, invariants) for each of them, for the construction of the Annotated
Code the activities are Design (choice of algorithm, local variables) and Coding.
The Tests are build in a standard manner: a test methods for each specification,
therefore the activity for each of the test artifacts is just Construction.

Before embarking on the activities that produce artifacts, Analysis is re-
quired, e.g., as to what exactly is intended by the Assignment, or what infor-
mation and ideas are needed for performing an Activity. This is indicated by
Analysis, which yields no artifact but prepares for each activity that does yield
the Artifact. Analysis is quite important: think before acting!

There is one more activity, Run Tests, which is the only activity that does
not result in a document, an artifact. It does however change the status of the
Tests artifacts, namely that they are executed. The AC+T is the solution to a
programming assignment only if all Tests are satisfied.

Figure 2 shows an overview of the approach in terms of the artifacts, activ-
ities and, represented by arrows, the relations between them.

The explanation of the symbols in this diagram is shown in Figure 3.
Figure 2 shows all of the activities that are in principle to be performed to

develop software. The three construction artifacts evolve, through the activities,
from each other, they are grouped horizontally in the figure. The three Test
artifacts primarily apply to and hence are based on (need), the corresponding
program artifacts; each of them, with the corresponding construction activity ,
is placed below the artifact it applies to. However, the Tests also evolve from
each other in the sense that they access progressively more details of the Code.
Furthermore, all tests are to be executed on the Code.

It is a crucial feature of the approach, that the activities provide information
as to how to develop an artifact but do not prescribe an ordering. It is quite
feasible when performing one activity, it is opportune to leave that one and
proceed with another, and later come back to the original one. An example
is, that when Coding, the need for an extra method becomes apparent, which
leads to a temporary return to the Internal View. Another example is, that when
developing a test in one of the Test Construction activities, this might lead to
an insight that a specification in a Specification activity should be changed.
These are examples of macro guidance: how to navigate between activities and
artifacts.

Micro guidance concerns what to do inside an activity. An example is, that
to start a development in the External Analysis it has to be decided which the
public classes are.

The three views are represented in the figure as columns. In case of a simple
development task, like a function to develop, some of the decisions and actions to

11



Figure 2: Overview of the approach
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Figure 3: Meaning of symbols

take are very simple and hardly require explicit consideration: the first and last
column suffice. But in the case of complex software, all of them, and especially
the middle column, are important: the Procedural Guidance guides a developer
along all the decisions to make and the order in which they can best be made.
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3 Aspects of the approach

In this section, we discuss some typical aspects of the Procedural Guidance. The
Procedural Guidance describes the steps through which a piece of functionality
is developed, what has to be done per step, how the results are laid down
and what the relationship is between the steps. However, this does not mean
that the Procedural Guidance enforces a particular order of the steps, or that
a particular (formal) notation must be used. The procedural guidance allows
flexibility: both the notation (informal/formal), the order of the steps, and even
which parts of the guidance are applied can be determined freely.

3.1 Principles, methods and methodology

The procedure aims for general known principles as rigor, appropriate formality,
separation of concerns, decomposition, abstraction, and modularity. But sat-
isfying these principles is no sinecure. Software engineers should be equipped
with appropriate methods and techniques [3]. Methods are general guidelines
that govern the execution of some activity. Techniques are naturally more me-
chanical and have more restricted applicability. Methods and techniques can be
packaged together to form a methodology: it promotes a certain approach to
solve a certain category of problems by preselected methods and techniques to
use.

From a software engineering perspective, the procedure in this monograph
forms a methodology: a series of activities (steps) is described that can be exe-
cuted in some orders. For each activity rules of thumb, hints, standard questions,
decisions to take, and notations are described. The goal of this methodology is:
‘getting quality software’, i.e. software that satisfies the fundamental principles
mentioned. Actually, all the methods and techniques used are known. What
is new, is that they are put together in one coherent and teachable software
development methodology.

The steps and the order of these steps exhibit some rigor: For each step it is
clear what to do and when the step can be finished. The techniques used within
each step lean on formal notations, but we use them in an informal way. The
steps give the possibility to test during the development at multiple points in
the process.

3.2 Flexibility in level of formality

Nothing in the above mandates that either the External View or the Internal
View be written in a formal notation derived from logic or mathematics. One
may do so if it is advantageous and easily readable: writing a + b is less work
and clearer than ‘the sum of a and b’. But there should be no obligation if one
does, for example, not aim for automated verification.

A specification records the precise requirements about a program, and, as a
consequence, also what should be tested. It is important to observe that pre-
cision and formality are not the same. The first can be obtained without the
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second, e.g., by describing all requirements in unambiguous natural language.
The second does not automatically provide the first, e.g., when an formal spec-
ification is not complete. For example, the specifications in Meyer’s book [12]
are formal Eiffel expressions, but this limits the expressiveness, as no quantifiers
are available.

Without going into the details of our approach, we elaborate a little on these
notions.

The main difference between formal and informal specifications is that the
former are amenable to automated checks: on syntactic or semantic aspects
of the specifications themselves, on the relationships between them and on the
relationship to the implementation. In case of informal language, human inter-
pretation is necessary to interpret the specifications.

The external specification, as part of the External View, is in terms of domain
entities, therefore no single formal language can be given. Nevertheless it is
possible to provide formal languages with associated tooling for specific domains
- this means that several formalisms and tools may be used.

The internal specification, as part of the Internal View, will be partially in
terms of implementation entities. In some cases, it may be feasible to eliminate
domain concepts entirely and express the resulting contract in a formalism.
This means that one domain independent formalism and toolset can be selected.
However, this is not mandatory and the level of formality may be freely decided
upon by users of our guidance.

It should be noted that the formal/informal choice is only relevant with
respect to specifications. The design is formal in the sense because method
headings satisfy the rules of the programming language, and of course so does
the code. In this context it may be observed that UML, although formal, is not
a suitable language to record the kind of specifications we mean. In our process,
UML plays a role in recording and visualizing the software’s design, but we will
use a flexible JML-influenced style for specifications.

It is important to realize that also without having automation as an aim
formal specifications can be very useful: they provide help to attain precision
in specifying because the meaning of the language is unambiguous. An example
of this is the use of formal invariants as an ingredient of informal specifications.

Similar observations apply to tests: by nature a test, written in a computer
language, is formal. The tests we aim at will only consist of calls to JUnit-
provided methods such as assertEquals, so there is no need for a separate design
or specification of the tests. In fact, the case analysis involved in specifying
helps enormously in determining the test cases needed. We consider this a
major asset of such a process.

3.3 Flexibility in development order

The fact that our guidance consists of a number of partially ordered steps might,
at first sight, create the illusion that we are proposing something resembling
the waterfall development method. However, this is not the case. The steps are
applicable to every programming activity that results in a compilable, testable
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code fragment. Typically, this will be the result of a single iteration in an
incremental and iterative development such as the Unified Process [5]. In fact,
even for a single use case the steps will be taken repeatedly, as we first build
the basic functionality and subsequently address concerns such as robustness,
security and concurrency.

The three artifacts need not necessarily be completed in sequence! For in-
stance, it is quite possible to make a choice for the private methods and at-
tributes as soon as the public ones have been defined, without first writing the
external specification. Furthermore, the drawn arrows in Figure 2 should not
be interpreted as a sequential order: for instance, useful work can be done on
specification before the design is complete. What they do express is that the
downstream activity cannot be considered completed before its predecessors
are: only during the last pass the arrows must be followed. This means that
changes in the design may force changes in or additions to the specification,
so the specification cannot be considered finished as long as the design is still
under construction.

In essence, our guidance is intended to provide a stepwise transformation
from requirements to the finished software unit, where every phase in this trans-
formation process contributes to the test suite. In this way, test development
proceeds hand in hand with software development [2]. This process may be
regarded as an instance of transformational programming [13, 15], but it is
less formal and has more emphasis on testing, less on code derivation than the
existing literature in that field.

One set of steps in our process concerns itself with the External View and
produces a specification exclusively in terms of the application domain. This
domain-based External View already serves as the basis for tests, which can be
defined before any implementation decisions have been taken [1]. It is only in a
later phase that attributes to represent the domain concepts are selected: this
activity is traditionally known as data refinement [14].

The stepwise development procedure we are advocating should not be con-
fused with the notion of stepwise refinement [16], as that is mainly concerned
with program decomposition. In our procedure this occurs during a single step
we shall call Internal Design; but the complete procedure entails many more
activities as analysis, specification, data refinement, and test development.

3.4 Flexibility of application of the approach

We have already stated that one set of activities in our process is concerned
with the software as it appears to those who will use and possibly extend it.
The end product of this is the External View, which consists of the signatures
and specifications of public methods and the classes containing these. The
level of formality can be freely chosen as appropriate to the project at hand.
However, when we wish to express something for which JML [8] has a convenient
notation, we adopt it in order to facilitate migration to a more formal approach
at a later stage. For instance, preconditions and postconditions of methods will
be denoted JML-like by @requires and @ensures respectively.
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It depends on the nature of the project whether the External View, Internal
View or Code will present the greatest difficulty and leads to the most momen-
tous decisions. There are problems where the essential difficulty is to find out
the precise requirements (External View), others where selecting appropriate
data types is crucial (Internal View), and still others where algorithm design is
the core (Code). It is also quite possible that some steps are essentially empty:
for instance, in cases where the external specification is already expressed in
types provided by the programming language, it may not be necessary to spec-
ify their internal representation. Also for didactic reasons, it can be decided to
only introduce the External view in a first course about programming and not
to pay any attention to the Internal View yet, which can be treated as part of
a course about data structures and algorithms.
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4 Concepts

In this section, we describe the concepts that are crucial in our method. The
following concepts are discussed:

� Requirements
� Analysis
� External versus internal
� Design versus specification
� Happy path and non-happy path

4.1 Requirements

Definition 4.1 A requirement is a prescriptive statement to be enforced by
the software-to-be, possibly in cooperation with other system components, and
formulated in terms of environmental phenomena [6].

The restriction to environmental phenomena means that a requirement should
be formulated in terms of the domain wherein the software should function. Soft-
ware to be used for elevator control should be described in terms of movement
between floors and of doors opening and closing, not in terms of assignment to
program variables. How these domain concepts should be represented in terms
of program entities is a matter to be decided later, in the internal design phase.
Requirements should be comprehensible to future users of the program, in or-
der to prevent systems being built that do not satisfy expectations. In terms of
the activities described in Figure 2, requirements are looked at during ‘external
analysis’.

In practice, establishing requirements is not a trivial task.

Definition 4.2 Requirements elicitation is the activity of discovering require-
ments and assumptions that will shape the system-to-be, based on domain
understanding. The requirements are discovered incrementally, in relation to
higher-level concerns, through exploration of the problem world. In real life
this is a cooperative learning process in close collaboration with the system
stakeholders [6].

In a first-year programming course, usually the programming assignments are
given in written form, without stakeholders being available for clarification.
However, the written assignment is often insufficient to serve as requirements:
it may be under specific and necessitate making additional assumptions that
should be recorded.

A typical exercise is as follows:

Example 4.1 Write a class called Person that has information about the per-
son’s name and age. The class should have methods to ask for the person’s
name and age.

We will use this as a running example.
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4.2 Analysis

Definition 4.3 Analysis is the inventory of all information needed to support
all decisions made during design and specification.

As we can see in Figure 2, design, specification and coding are all based on
analysis. By analysis we mean the ongoing deliberations that lead to informed
choices and design decisions. This analysis is not a phase that can be considered
closed at any point, nor does it produce a document of its own: the results of
analysis find their way into design, specification and code.

From a didactic point of view, we do not consider it a good idea to force
students to write out the reasons for their decisions in full, as in literate pro-
gramming [4]. This will probably overtax their prose composition ability, and
they will not appreciate this as a useful contribution to code quality. However,
students should be prepared to answer questions about the reasoning behind
their choices.

Note that the analysis step is very important. If for example insufficient or
even no thought is given to the extent to which a method should be robust, i.e.
what can go wrong, then this aspect will be insufficient or even not reflected in
the design, specifications, implementation and test cases.

Example 4.2 Here we can think of which names are allowed. For example, a
name may only consist of letters. Age is expressed in years, i.e. integers greater
than or equal to zero. Age is determined relative to the current date.

4.3 External versus internal

In our approach, the distinction between internal and external a class or method
is important. The boundary between internal and external is formed by an
interface.

Definition 4.4 An interface is the set of services that a module provides to its
clients1 [3].

In an OO-language a module is a class delivering its services by means of
methods. A class interface describes exactly what a client need to know in order
to avail themselves of the services provided by the class. This is the External
View of an interface. The way the services are accomplished by the class is
called the implementation of the class. This is the Internal View of an interface.

Example 4.3 An external design of the Person class can be as follows

public class Person {

public Person(String name , Date birth_date)

public String getName ()

public int getAge ()

}

1This concept should be distinguished from the Java syntax element of the same name.
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Note that only public members are included. An internal description can be:

public class Person {

private String name

private Date birthDate

public Person(String name , Date birth_date)

public String getName ()

public int getAge ()

}

Note that besides the public members also the private members are incorpo-
rated. Note also the attribute birthDate of type Date, used to calculate a per-
son’s age. Instead of date of birth, age of type positive integer could have been
chosen. During analysis we decide for date of birth to avoid having to update
the age every year.

4.4 Design versus specification

In our procedure, we distinguish design from specification. Generally, a software
design is about a system decomposition into modules, a description of what each
module is intended to do and of the relationship among the modules. Such a
description is often called a software structure [3]. In our approach, the focus is
on the development of one class with its methods. A class design is described
in terms of the class definition with its methods ans attributes.

Definition 4.5 A class design is the class name with its attributes and meth-
ods. A method is defined by its signature, i.e. method name, names and type
of parameters, and return type. An attribute is defined by its name and type.
Attributes and methods can be public of private accessible.

Example 4.4 The external design of the class Person is as follows:

public class Person {

public Person(String name , Date birthDate)

public String getName ()

public int getAge ()

}

Design as a process means adding syntactical entities as class, attribute and
method. A design can be external (class header and public methods) as well as
internal (class header, public and private methods, and attributes).

A specification is a statement of an agreement between the implementer of
a service and a user of that service [3]. A specifications add rules to the design
entities, i.e. the requirements that must be met when a service is used (precon-
ditions) and how the entity then behaves (post conditions and invariants).

Definition 4.6 A specification adds rules to design entities in the form of pre-
conditions, postconditions and invariants.
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Example 4.5 We can specify the following two rules for the constructor’s pa-
rameters date of birth and name as part of the external design of the Person
class: ‘The date of birth is today or in the past’ and ‘name is a valid name’.

Specifying as a process means adding rules to attributes (private) and methods
(public and private). A specification can be external (belonging to a public
method) or internal (belonging to a private attribute or private method).

A complete class design and specification lead to a complete internal and
external description of a class:

� An external design and external specification results in an External View
(also known as API)

� An internal design and internal specification results in an Internal View.

4.5 Happy path and non-happy path

In our approach, we make a distinction between success or happy path behavior
and non-success or non-happy path behavior. From now, we will use the terms
happy path and non-happy path behavior.

Definition 4.7 Happy path behavior describes a successful method call that
satisfies the interest of a client. Non-happy path behavior describes a not suc-
cessful method call [7].

Happy path behavior is as everthing goes well, i.e. it is possible to realize the
intent of the module. A non-happy path describes what happens if the intent
of the software can not be realized. It often results is an error message like an
error-code, an exception, or the boolean value false.

The distinction between happy- and non-happy path is an example of the
principle Separation of concerns: it allows us to deal with different individual
aspects of a problem so that we can concentrate on each separately [3].

In our approach, we first concentrate on happy path behavior. After that, we
concentrate on non-happy path behavior for which we extend the design, spec-
ification, implementation and test cases. Adding the non-happy path behavior
is known as providing robustness (see Section 9).

Example 4.6 Looking to a log-in process, happy path behavior is as the string
value is correct. We can make a design and specification for this behavior.
Non-happy path behavior happens when the string value is not correct. We
can extend the design and specification, for example by extending the method’s
signature by adding an exception and by adding additional rules that describe
when the string value is incorrect and that in such a case the exception is thrown.
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5 External View

5.1 External Analysis

The External Analysis focuses on the question: ‘Precisely what functionality
must be realized?’ We distinguish two situations as examples:

1. A class must be realized as part of an assignment. The class signature
and methods’ signatures are given. The exercise is to complete this design
with conditions specifying the effects of the methods and to implement
the class.

2. A class must be realized as part of a project. There is a rough idea of
what the class should do, but all the details, such as signatures, have yet
to be determined.

In the first situation, the analysis mainly consists of understanding the given
design and to gather all the information needed to be able to draw up the con-
ditions as part of the specification step. In the second situation, the room for
choice is much larger. The External View as a whole must be set up entirely.
Now, for example, one has to think about suitable names for the class and meth-
ods, what parameters are needed, the type of these parameters, what conditions
apply, et cetera.

External Analysis means studying the domain in which the class or function
will function. This type om of knowledge is called domain knowledge. The
domain can be about mathematics such as a function that adds a series of
numbers or a function that solves a system of n equations, or can be non-
mathematical as for example a class for the registration of a person or a bank
account.

Guidance From the context given or assumed, the following questions can
give relevant information:

� Which data is minimally required to do the processing?

� Is there a special notation for the data? Think of km/s instead of m/s or
cm instead of inches!

� Give precise definitions of all the domain concepts that play a role in the
exercise.

� Do implicit arrangements exist in the domain? Yes, make them explicit!
For example, strings representing a calendar date have a different order
in the US and in Europe (month/day versus day-month). Leaving the
meaning implicit will incur serious misunderstanding in international use.

� Which return value(s) is/are expected? Is it a simple value? For example,
the result of an addition. Is it a complex value? For example, a path
through a network or two roots of a quadratic equation. Is it a side effect,
for example text saved in a file.
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� Are there constraints on the data? For example a temperature in Celsius
can not go below −273.15 (absolute zero), a list with items contains zero
or more elements.

� Give examples of use and input/output.

Example 5.1 The results of the analysis for the Person class, Example 4.1, can
be:

� We consider age in relation to the current date.

� Age has unit year.

� Age is a zero or positive integer.

� We choose not to have an upper boundary.

5.2 External Design

Design is about adding syntax elements based on the analysis results. At this
stage it is about the public elements of a class and/or method. The class’s and
methods’ signatures are given, provided with a description of the responsibility
of the entity using the description tag @desc.

Guidance

� Give each class and method one responsibility, i.e. high cohesion. If the
word ‘and’ is used, the class or method has probably to much responsibil-
ities.

� Think of clear names for the class (noun) and its methods (verb) reflecting
their responsibilities.

� Write the name of the class and the signatures of the public methods.

� Describe the class’s and methods’ responsibilities (with the tag @desc) in
terms of domain-specific concepts gathered during the External Analysis.

� Often, getters and setters are default and not part of the design.

Example 5.2 The External Design for the Person class, Example 4.1, can be:

/**

* @desc This class contains the information about a

* person consisting of his/her name and age in years in

* relation to the current date.

*/

public class Person {

/**

* @desc Constructs a person object

*/
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public Person(String name , Date birthDate)

/**

* @desc Returns the person ’s name

*/

public String getName ()

/**

* @desc Returns the person ’s age

*/

public int getAge ()

}

5.3 External Specification

An External Specification adds conditions to the External Design entities and
thereby completes the External View (often called the API, for Application Pro-
gramming Interface). These External Design entities correspond to the concepts
in the problem domain (represented by the classes) and the tasks working on the
concepts (represented by the methods). These concepts and tasks must satisfy
some conditions on their behavior.

Example 5.3 A person’s name should be a valid name. It must be, for exam-
ple, only made up of characters; numbers are not allowed. A person’s age, must
be a positive whole number, also on the person’s birthday. A person is not 20,5
years old for a little while. Instead, one can have age 20 or 21 years and nothing
in between.

General principles There are two general principles for External Specifica-
tions:

1. They are public, which means that they are intended for the clients of the
software entity, not just for the implementer.

2. They should not refer to internal implementation details but only to ‘what
is visible to clients’, i.e. the concepts from the application domain and the
signatures of the public methods.

In our approach, the External Specifications can be written in natural language.

Example 5.4 As part of an External Specification of a stack, the method ‘pop’
can be described as ‘removes the top element of the stack’. A rule can be ‘the
number of elements in the stack can not be negative’.

Elements of an External Specification An External Specification com-
prises the following elements:
For each class:

� @desc: the responsibility of the class, adopted from the External Design.
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� @inv: the states an object of the class may be in expressed in terms of
domain concepts.

For each method:

� @desc: the responsibility of the method.

� @requires: the precondition that must be met when the method is called,
in terms of the method’s parameters and/or other domain concepts.

� @ensures: the postcondition that will be met when the method was called
and the precondition was true. It comprises:

– A boolean function on the domain concepts and methods arguments.

– In case of a result, this appears in the post condition as \result =

description of result value.

� @assignable: Properties of the state of this or other objects that the method
may change.

� @pure: Equals @assignable \nothing, i..e. does not change any object’s state.

The reason for having an @assignable clause is that this avoids cluttering the
specification by enumeration of all the state properties that will not change
upon execution of the method. In particular, when the method merely inspects
the state and does not change it at all, we use the abbreviation @pure. Please
note that this is a less rigorous restriction than the ‘referential transparency’
concept used in functional programming, which requires that the value of a
function call depends only on the value of the parameters, not on any attributes
or global variables.

Guidelines for class specifications

� Are there one or more class invariants? An example of a class invariant, as
part of a sorted collection’, written in natural-language in terms of domain
concepts is: ‘This collection is sorted’.

Guidelines for method specifications

� Which combinations of values for the parameters should be allowed? In
what state can the method be called? (@requires)

� Which return values are possible?

� How does the method affect the (state of) the object? (@ensures)

� What does the method change within this or other objects? (@assignable
clause or @pure)

Example 5.5 After completing the External Specification, the Person example
(Example 4.1) looks like this:
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/**

* @desc This class contains the information about a

* person consisting of his/her name and age in years in

* relation to the current date.

* @inv age >= 0 AND name is a valid name

*/

public class Person {

/**

* @requires birthDate is today or in the past

* AND name is a valid name

*/

public Person(String name , Date birthDate)

/**

* @desc Returns the person ’s name

* @ensures \result = the person ’s name

* @pure

*/

public String getName ()

/**

* @desc Returns the person ’s age in years

* @ensures \result = the person ’s age in years

* @pure

*/

public int getAge ()

}

Guidance

� As the External View contains no implementation code, no attributes and
only public method signatures, it is ideally suited to the Java interface
concept. It is, in fact, often preferable to store this as an interface to
be implemented by the class we are about to design, as this opens the
way to multiple implementations and allows client methods to be equally
applicable to all of these.

� If the class under construction implements an interface, the External Spec-
ification of the interface is to be regarded as the External Specification of
the class as well.

In the examples discussed so far, we have defined one specification per
method. We are free to have more than one specification per method. The
following gives an example.

Example 5.6 Suppose we have to specify a method power(x, y) calculating the
expression xy. Depending on the requirements, we may have the following
external design and specification:

/**

* @desc Calculates the power of x to y

* @requires x >=0 and y >= 0
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* @ensures \result is x^y

* @pure

*/

public static int power(int x, int y)

However, 00 is not defined mathematically. We can choose for example 00

equals 0 or 1. Using subspecifications, we are able to make our choice explicit.

/**

* @desc Calculates the power of x to y

* @sub x != 0 {

* @requires x > 0 and y >= 0

* @ensures \result is x^y

* }

* @sub x == 0 {

* @requires x ==0 and y >= 0

* @ensures \result is 1

* }

* @pure

*/

public static int power(int x, int y)

The extra subspecification x == 0 is valuable for the client of the method
power. It alerts the client to this special case. As we will show later, it helps the
programmer too. It helps to implement the body of the method using the two
distinguished cases and it helps to define test cases.

To use a subspecification, we add the tag @sub followed by a description of the
case. This description is essentially a comment for the human reader, so it does
not have to adhere to Java naming conventions: natural language and various
mathematical formulas are allowed. However, as we shall see in the chapter
on testing, test methods will correspond to these subspecifications and need to
have names showing to which they belong. The names of test methods must
abide by Java rules for method names. In the example, this would probably
lead to something like testPowerNonzero and testPowerZero.

We will discuss subspecifications in more detail in Section 6.5, because sub-
specifications mostly occurs in the Internal Specification activity. However, it
can be valuable to apply subspecifications in the external view too.
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6 Internal View

6.1 Internal Analysis

6.1.1 Representation

An important decision to be made as the foundation for Internal Design is
how to represent domain concepts in term of programming language entities.
Of course, in many cases this is a trivial decision: most programs having to
manipulate integer values will simply use the standard type int (but some might
need java.math.BigInteger instead). However, there are many cases where there
is no standard implementation available (think of graph algorithms) or, on the
other hand, there are many possibilities to choose from (for instance collections).

Example 6.1 Consider a class Producer whose External View consists of a set
of strings, with an operation String produce() that removes a single element from
the set and produces that element as the result. The Java library interface
java.util.Set<String> does not offer this functionality, so the programmers must
build their own. There are many options to choose from here; however, the
point we want to make is that the chosen option is not relevant for the users of
this class and must not appear in the External View. This has the advantage
that a change in the representation will not influence any programs that use
class Producer. However, the Internal View, which sets the task for coding, must
provide the decision taken.

Let’s consider one option: give class Producer an attribute stack of type
java.util.Stack<String>. Take care that every element of the set we wish to
represent is present in stack exactly once. Then method produce can be imple-
mented as stack.pop(). Note that the order in which the elements appear in the
stack is not relevant; any order suffices.

Guidance

� Decisions at this point will depend heavily on arguments of practicality
and efficiency. For instance, in the Person example (Example 4.3), the
insight that it is more practical to store the birth date rather than the age
(because the latter must be updated at every birthday), and to recalculate
the age everytime it is needed, is typical for the discussions in Internal
Analysis.

� The correspondence between the current state of the domain concepts and
that of the language entities will be documented in the Internal Specifica-
tion by a @represents clause. This is not necessarily bijective, as is obvious
from Example 6.1: one and the same set corresponds to many stacks that
differ only in the order of the elements.

� To emphasize that the External View is entirely independent of the chosen
data representation, it may be advisable to make the External View into
an interface rather than a class. This has the advantage that multiple
implementations may be present in the same software.
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6.1.2 Attributes and private methods

Once we have decided on the data types to represent domain concepts, we can
complete the choice of attributes to be stored in the objects and of private
methods useful for working with these attributes.

Guidance

� One good reason to introduce private auxiliary methods is the avoidance
of code duplication, which will occur if the same computation must take
place in several different circumstances.

� It is seldom a good idea to have public attributes. Having all attributes
private and regulating access through public getters and setters has two
advantages: in the first place this makes it possible to refuse values that
do not correspond to possible states of the domain (think of negative
ages), in the second place the representation may be changed later without
influencing clients.

� Often there is a choice to be made between storing computed values in an
attribute and recomputing them when needed. For example, for a class
Person we can add an attribute age storing an age value. Alternatively, we
can recompute the age value when the age value is needed. Notice that in
the first option the age value must be recomputed yearly too.

� Both attributes and methods should receive a clearly understandable name
that reflects their function.

6.1.3 Functional decomposition and helper objects

Whenever a programming task results in voluminous code, it is not a good idea
to put it all in a single method. For understandability and reusability, it is
better to have simple methods dedicated to a single task, a principle known as
cohesion. The principle of cohesion also functions at the class level: if a class
seems to serve several dinstinct purposes, it is better to split it into separate
classes, each with a single responsibility. This leads to so-called helper objects,
that relieve the main class of some of its burdens. An example is as follows:

Example 6.2 For calculating the price of a product in a certain country, several
tax rules are needed. With a number of countries, defining all these rules in
class Price results in low cohesion of class Price. It is better to define an extra
interface Tax with subclasses for each country. Class Price uses one of these
subclasses by delegation.

We will return to this issue in more detail in a later section.
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Guidance

� The functional decomposition process may go through several stages, each
time introducing smaller and simpler steps until we reach the level where
these have an obvious implementation consisting of only a few statements.

� Auxiliary calculation steps that are understandable on their own should
be delegated to separate methods. Consider carefully whether these aux-
iliary methods are useful only for the present purpose, in which case they
should be private methods of the class under construction, or will be more
generally useful, in which case they should be public methods, possibly of
a different, more specialized class.

� In many cases the helper object classes need not be constructed from
scratch, but can be found in a library or be defined as a subclass of an ex-
isting library class. For instance, class Date occurring in the standard Person

example (Example 4.3) can be implemented using java.util.GregorianCalendar.

6.2 Internal Design

In the Internal Design activity, we record the decisions made during Internal
Analysis.

Example 6.3 Following the running example, the person’s name and age should
be retrievable, so we decide on private attributes name of type String (there be-
ing no use for a StringBuffer because names do not change all the time), and
birthDate of a type Date that can be used for computations with calendar dates
(rather than an attribute age, for the reasons explained above).

Attribute birthDate is an example of a helper object. For the implementation
of method getAge() it is necessary that class Date be equipped with a suitable
method to calculate the number of years between two given dates. Auxiliary
private methods in class Person are not needed in this example.

Guidance

� Generally, we determine at this stage what attributes and methods will
certainly be needed. When it turns out later, for instance during imple-
mentation, that other attributes and methods are needed, these can be
added later. The development process is iterative and incremental.

� At the point of design, we also add descriptions of the classes and methods
to explain their use. These will be elaborated upon, to make them precise
and complete, during specification activities.

� As in External Design, we use the convention that all descriptions and
specifications are placed in JML-like comments above the entity described.
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6.3 Internal Specification

The Internal Specification of a method differs from the External Specification
in that there is an extra clause tagged by @represents that determines how the
problem domain concepts (used in the external specification) correspond to
class attributes. This clause is called the representation relation. Just like the
External Specification, there are @requires and @ensures tags listing respectively
the precondition and postcondition of the method. However, in the Internal
Specification we prefer to use only attributes and parameters here, in order to
make the implementation independent of domain knowledge.

Similar differences exist between the External and Internal Specification of
a class; however, at the class level we do not have preconditions and postcondi-
tions, but we do have an invariant, tagged with inv, that limits the states the
object may legally take.

Example 6.4 After completing the Internal Specification, the Person example
(Example 4.3) looks like this:

/**

* @desc This class contains the information about a

* person consisting of his/her name and age in years in

* relation to the current date.

*/

public class Person {

/**

* @represents age = Date. yearsBetween (Date.today , birthDate)

* AND name = lastName

* @inv birthDate <= Date.today AND lastName is a valid name

*/

private String lastName

private Date birthDate

public Person(String aName , Date birthDate) {

/** @requires birthDate <= Date.today AND aName is a valid name

* @ensures this.birthDate = birthDate AND lastName = aName

*/

}

/** @desc Returns the person ’s name */

public String getName () {

/** @ensures \result = lastNam

* @pure

*/

}

/** @desc Returns the person ’s age in years */

public int getAge () {

/** @ensures \result = Date. yearsBetween (Date.today , birthDate)

* @pure

*/

}

}

Guidance
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� Internal Specifications are only visible to the developer(s) of the class itself
(or perhaps the developers of the enclosing package). Clients of the class
should not depend on them in any way.

� An important difference between external and internal specifications is
that external specifications also bind all subclasses, whereas internal spec-
ifications only apply to the class in which they appear. The reason is that,
due to dynamic binding in OO languages, a variable declared to be of a
certain class type may actually point to an object of some subclass, so
that method calls will perform an overridden version. Hence the client
must be able to trust that such overridden methods will also conform to
the external specification of the superclass [10].

� Internal Specifications focus on the internal state (attribute values). For-
mally, they consists of assertions on the state. State consists of the mo-
mentary values of the object’s attributes.

� When designing a class, determine whether all combinations of values for
the attributes are allowed. Do some combinations result in an inconsistent
object? The class invariant @inv is the place to record this. Every method
should respect the class invariant, in the sense that this condition is added
silently to the precondition and postcondition.

� In practice, avoiding domain concepts in Internal Specifications is not
always quite feasible, as it may result in conditions that are hard to read or
understand. To see an example, look at the conjunct aName is a valid name

in Example 6.4.

� The Internal Specification is not independent of the External Specification,
but must be a refinement of it. The exact rules governing the correspon-
dence will be listed in Section 6.4

� In writing specifications, we follow the general assumption that parameters
(and array elements occurring in them) are non-null.

� In a postcondition, we can refer to the value a parameter or attribute had
in the situation of the precondition by preceding its name with \old.

� It is practical if all views are generated from a single source document.
This requires some extra editor software, but avoids the complications
involved in keeping all views in synchrony. A helpful convention is then
to put external specifications of classes and methods above the heading,
internal specifications below (within the name space introduced by the
definition).
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6.4 Correspondence between External and Internal Spec-
ifications

6.4.1 Proof rules

The internal specification does not need to be a precise translation of the exter-
nal specification. What we need is that all methods built by using the internal
specification will satisfy the external specification promised to the client. That
means that the internal specification is allowed to be more strict than the exter-
nal one: we may deliver a better implementation than is contractually required.
What we mean by ‘better’ is that the implementation may be usable in more
situations than the external specification required, so the internal precondition
may be weaker; and the results delivered may be more precisely described, so
the internal postcondition and the internal class invariant may be stronger than
the external ones. To remember this, keep in mind that in real life no client
will object if the product delivered turns out to have a lower price and better
performance than specified in the sales contract. See Example 6.1 for a case
where the internal specification really demands much more than the external
one.

The formal rules governing the correspondence between the two levels of
specification may strike the reader as somewhat abstract and difficult. Fortu-
nately the concrete proof obligations arising from this correspondence rarely
amount to much.

� The representation relation (represents) and the internal class invariant
should together imply the external class invariant. In our running exam-
ple 6.4, the internal invariant of Person is birthDate <= Date.today. The rep-
resentation relation is age = Date.yearsBetween(Date.today, birthDate). We
have to check that these two together imply the external invariant age >= 0.
In this case, the check is a consequence of the specification of Date.yearsBetween.

� For every method, the representation relation and the external precon-
dition should together imply the internal precondition. In the running
example the external precondition of the constructor of Person, as given in
Example 5.5 is birthDate is today or in the past. The representation rela-
tion is age = Date.yearsBetween(Date.today, birthDate), but we do not actu-
ally need that to check the internal precondition birthDate <= Date.today.
In this case, the check is trivial.

� For every method, the representation relation and the internal postcondi-
tion should imply the external postcondition. In the example, the internal
postcondition of getAge() is \result = Date.yearsBetween(Date.today, birthdate).
The representation relation is age = Date.yearsBetween(Date.today, birthDate).
We have to check that these two together imply the external postcondition.
\result = age. Once again, this check is trivial.

33



6.4.2 Class invariants

The representation relation may also entail extra class invariants (sometimes [9]
called representation invariants), used to limit the range of values allowable for
attributes. Some examples are:

� If, in a system dealing with calendar dates, the month is represented by
an attribute int m, an extra condition 1 ≤ m ≤ 12 is to be added to the
class invariant (and hence to all preconditions and postconditions).

� If a string is used to represent a person’s name, an extra class invariant
should state that all the characters in the string are letters (and not, for
instance, &).

� If an array is used to store a number of input values, an internal invariant
should limit the number of values to prevent overflow.

� When, as in Example 6.1, a stack is used as representation of a set, an
extra class invariant is needed stating that all elements of the stack should
be different.

6.4.3 Representation relations are not necessarily functional

A question one might legitimately ask is whether the connection between domain
entities and class attributes is a function in any direction. Many textbooks seem
to think so, using terms like ‘abstraction function’. However, in general the
answer is no. We give two examples to show this.

To show that a single value in the problem domain may correspond to several
different attribute states, we can return to Example 6.1. Different states of
attribute stack that differ only in the order of the elements in the stack will
represent the same set of strings in the domain. So there is no function from
the domain entities to the attribute values.

In the other direction, consider a class used to print boarding cards for
an airplane. Next to flight number, boarding time, and assigned seat, these
contain only the last name and first initial of the passenger. So this requires
a class Passenger that only stores those two facts. However, it is quite possible
that two different passengers are on the same flight and have the same last name
and first initial. These will correspond to separate objects in the seat allocation
process, but separate objects with the same attribute values. So there is no
function from the attribute values to the domain entities.

6.5 Subspecifications

It is often useful to include specific subspecifications per method instead of one
comprehensive specification. We have already seen an example of this at the
end of Section 5.3. The following gives another example.

Example 6.5 Consider a class modeling phone numbers, with a method that
will call another phone. The corresponding contract would be something like
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/**

* @desc This class contains a phone number.

*/

class Phone {

/**

* @represents theNumber contains the digits of the phone number

* @inv all theNumber[i] are in range [0..9] AND theNumber.length >= 10

*/

private int[] theNumber;

public Phone(int[] number) {

/**

* @requires all number[i] are in range [0..9] AND number.length >= 10

* @ensures theNumber = number

*/

}

/**

* @desc establishes a phone call between this and that

*/

public call(Phone that)

}

When we think about the implementation of method call, we realize that, due
to properties of the telephone exchange, the process of realizing the connection
is different for national and foreign telephone numbers. Therefore class Phone

needs a way to enable clients to check whether the phone number is national or
foreign. These can be distinguished because the latter begin with 00, whereas
inland phone numbers begin with 0 followed by a nonzero digit. Examining the
result isForeign naturally produces a case analysis. The idea of subspecifications
caters for such a situation. In Example 6.5, the specification of call would then
look as follows.

Example 6.6
/**

* @desc establishes a phone call between this and that

* @sub Phone number is not foreign {

* @requires !that.isForeign ()

* @ensures phone call on the national exchange is established

* }

* @sub Phone number is foreign {

* @requires that. isForeign ()

* @ensures phone call on the international exchange is established

* }

*/

public call(Phone that)

/**

* @desc determines whether the phone number is a foreign one

* @pure

*/

public boolean isForeign () {

/**

* @requires theNumber [0] = 0
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* @ensures \result = theNumber [1] = 0

*/

}

This leaves the question what should happen in case theNumber[0] != 0. In that
case the telephone number is ambiguous and we must decide what course to
follow. One option would be to raise an exception, another to assume that a
local number is meant and to add the standard local prefix. How to specify this
will be discussed in the Section 9 on robustness.

Subspecifications satify the following general pattern:

@sub <description of the situation > {

@requires <precondition >

@ensures <postcondition >

@assignable <footprint

}

Guidance

� The splitting of a contract into subspecifications mostly occurs in the
Internal Specification activity, as this is usually the phase where the need
for case analysis first appears. However, it is possible that this is already
clear during External Specification, and in that case the External View
will also contain subspecifications with the same syntax.

� The idea of subspecifications is taken directly from JML. However, a major
difference is that JML does not require to adorn the subcontracts with a
descriptive name, and merely separates them with the keyword also.

� In writing specifications, we follow the general assumption that parameters
(and array elements occurring in them) are non-null.

� In a postcondition, we can refer to the value a parameter or attribute had
in the situation of the precondition by preceding its name with \old.

� During implementation it may turn out that the specification can not be
fulfilled in an efficient way. The solution can be to negotiate a change in
the specification.

� Experience with the finished program, may indicate that the requirements
did not capture the intention of the problem owner very well. Again, this
may lead to negotiating changes in the requirements, design and specifi-
cations.
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7 Annotated Code View

The treatment of the Coding acvitivy in this section is relatively terse. This is
because this subject is treated in detail in existing textbooks and courses; we
have little to add

7.1 Code Analysis

During Coding, the methods are provided with a body. The signature (a result
from Internal Design) and conditions (a result from Internal Specification) both
indicate what must be done and which conditions apply. But what the method
body will look like, is still open. At the method level, it makes sense to determine
whether each method so far has only one responsibility or whether it should be
split up (cohesion). Additional private help methods can be added if necessary.
For more algorithmic problems, coming up with an algorithm can still be a
complex affair. For this, we refer to standard courses about data structures and
algorithms.

During this analysis step, we get insight in how to implement the method
bodies. In the next step, these method bodies are designed and coded.

Guidance

� Think of further decomposition of the problem.

� If needed, think about additional (private) helper methods.

� Try to abstract, i.e. make the method domain-independent. For example,
sorting ages can be considered as sorting integers.

� If the problem is too complex, try to simplify it. For example, first try to
sort two numbers, after that sort more numbers.

� Even if the process is known, write out the solution completely. Very
often, you will get insights in all the details valuable for the specification
and the implementation.

� Apply pen and paper elaborations: how to come from input to output?

7.2 Code Design

Based on the analysis, a method’s body structure is chosen or invented. In case
of an algorithmic problem, a concrete algorithm should be designed. Sometimes,
only a sketch of this algorithm is available based on the analysis step. Some-
times, an algorithm is known as a standard for solving the problem at hand. In
both cases, we have to think about meaningful local variables and if needed, we
have to design extra (private) helper methods.
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Guidance

� Describe the solution’s process and its data in abstract terms, say as com-
ments in natural language or math notation; do not limit yourself to legal
Java expressions.

� The algorithmic decisions reached in Code Design can be recorded as ordi-
nary comments. Once the executable code has been produced in the next
step, these may remain as explanation to make the code more readable
and maintainable.

� The local variables in the code serve to record temporary versions of results
that are built up step by step. For instance, the greatest common divisor
of two integers is usually calculated by Euclid’s algorithm, which involves
a repeated application of division remainders.

� A different use for local variables is to record the result of a calculation
that is used repeatedly. For example: solving a quadratic equation we can
use the abc-formula. The abc-formula makes use of a discriminant which
can be defined as a local variable.

� Introduce additional private helper methods as a result of the decomposi-
tion. For instance, in writing a method for sorting an array, the decision
to use the Quicksort algorithm calls for an auxiliary method for sorting
part of the array (that will be called recursively).

� If necessary rethink Internal Design and Specification issues. It may occur
that the algorithm requires operations on the attributes that cannot be
efficiently implemented with the chosen type; in such a case, we must
consider the possibility of choosing a different representation.

7.3 Coding

During coding, the method body’s structure in terms of local variables, pseudo
code or math language is translated into an machine-interpretable language such
as Java. The result is called the Code; the Annotated Code View consists of the
Code together with the specifications and comments developed earlier. These
are not to be discarded when the Code has been completed, as they have an
important function in ensuring maintainability of the software, and also form
the basis for Test Construction (as we will see in the next section). Hence the
Annotated Code View contains both the External View and the Internal View.
We can consider the subsequent views as a continually growing document. The
complete solution of a programming task consists of this document together
with all tests.

Guidance

� Search for duplication in code. In case of duplicated code, think about
extra helper methods (design).
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� Ensure that the code satisfies the design and specifications, i.e. ensure the
correctness of the functionality. Manually check the correctness of the
code against the specification. Later, we will define External and Internal
Tests to check this automatically.

� Avoid all kinds of bugs, think about statements that are not guaranteed
to succeed. Later, we will define Code Tests to check this automatically.
Examples of bugs are:

– Array-access out of bounds.

– Creation of an array with negative size.

– Operations that cause overflow and malfunction.

– Method calls on variables and fields that have the null-value.. . . etc.
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8 Testing

8.1 Introduction

Having the three views External View, Internal View and Annotated Code View,
finding suitable tests has become easier: the three views give a lot of information
for this. For each of these views, we define dedicated tests:

� External Tests belonging to the External View. These are JUnit test cases
testing whether the external specifications are satisfied.

� Internal Tests belonging to the Internal View. These are assertions based
on the internal specifications. These assertions can be tested by extra
JUnit test cases.

� Code Tests belonging to the Annotated Code View. These are extra test
cases covering critical code fragments, for instance situations of overflow,
exceedance of array boundaries, or the existence of a file that has to be
read. Code Tests can be implemented in the form of JUnit test cases or
assertions.

Our focus is on classes and methods. For testing these units of code, unit
testing is a suitable approach, which is technical feasible with Java’s JUnit test
framework.

Use of JUnit We assume the following concepts: Each Java class X has its
own test class XTest implemented in a separated file. For each subspecification of
each method of class X, class Xtest contains a test method annotated with @Test.
Each test method contains one or more test cases, represented by assertions,
i.e. predicate expressions that are either true or false, for example assertTrue. A
test case defines a pair of test input and expected result.

Assertions can be applied in the class under test as well, with Java’s assert

keyword. These predicates are located at certain places in the code whose value
is interesting during the execution of the code at that place.

From specifications to test code In our framework, the step Test Con-
struction consists of the translation of all the (sub)specifications as part of the
External View and Internal View into test cases, i.e. pairs of test input and ex-
pected result. The translation of these pairs into JUnit test code is a relatively
easy task: for each combination ‘method M – (sub)specification C’ a test method
with name testMC is defined containing the assertions needed and provided with
annotation @Test.

8.2 External Tests

External tests are exclusively based on the External View. The reason to pro-
duce External Tests is that these may be applied time and time again during

40



the development process as the Code is being constructed and refined. External
Tests may be defined as soon as the External View is available; it turns out that
the definition of tests itself contributes to getting the specifications clear and
complete.

Defining an External Test, we apply the following approach consisting of
three steps:

8.2.1 Step 1: Make a model

Being able to test sufficiently whether the functionality implemented satisfies
the contracts as part of the External View, we have to ‘translate’ these contracts
to test cases. To do this in a way giving us sufficient certainty that we have all
test cases needed, we make use of test models. There exist several test models,
for example Equivalence Classes of input domain variables, Boundaries of input
domain variables, Decision Tables, Combinatorial and Mutation Testing. For
practical reasons, we choose for the first two mentioned: Equivalence Classes
and Boundaries of input domain variables. With both models, we are able to
find sufficient test cases corresponding to a contract.

Example 8.1 Suppose we have the following External View:

/**

* @desc Calculates the special sum of two restricted variables

* @sub happy path {

* @requires 0 <= x <= 9 and 1 <= y <= 10 and x+y <= 17

* @ensures \result = x + y

* }

*/

int specialAdd(int x, int y)

Based on this contract, we can define the following equivalent classes and
boundaries of the input domain, where vP means valid partition (in Section 9
about robustness we will add invalid partitions too):

Variable Valid or invalid class Range of class Boundaries
x vP1 [0..9] 0 and 9
y vP2 [1..10] 1 and 10
x+y vP3 [1..17] 1 and 17

8.2.2 Step 2: Choose a coverage criterion

Also with two test models Equivalent classes and Boundary testing, it is often
impossible to apply all possible inputs to test whether the software produces the
correct output. Therefore, we choose a coverage criterion. There exist several
coverage criteria. Again, for practical reasons, we choose one criterion, namely
the all combinations coverage. In combination with the Equivalence Classes
model, this means that we have to take for each input variable all valid classes
of its input domain and then combine the classes of these input variables in
every possible way. To reduce the number of test cases, we choose from each
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input class minimal one value. As boundaries, we choose the minimum and/or
maximum value at the boundary of each equivalent class.

Example 8.2 Following Example 8.1, we choose to use the boundary values
and one extra value from each equivalent class. How to choose the values be-
comes more obvious by showing a graphical representation of the values of vari-
ables x and y, which is in this example possible. Figure 4 shows a sketch of this
graph. This results in the next table:

Figure 4: A sketch of the graph of the valid values of x and y

Variable(s) Valid or invalid class Input values
x vP1 0, 5, 9
y vP2 1, 5, 10
(x,y) vP3 (0,1),(0,5),(0,10),(5,1),(5,5),(5,10),(9,1),(9,8),(7,10)

8.2.3 Step 3: Design test cases

Having the allowed values for the input variables, we now have to establish the
test cases by combining these values and determining the expected results.

Example 8.3 Following our example, the happy path test cases becomes then:
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x y Expected result
0 1 1
0 5 5
0 10 10
5 1 6
5 5 10
5 10 15
9 1 10
9 8 17
7 10 17

Based on this table the JUnit testcases can be easily implemented. In pseu-
docode, the final test code becomes:

@Test

testSpecialAddHappyPath () {

assertEquals(specialAdd (0, 1), 1)

assertEquals(specialAdd (0, 5), 5)

assertEquals(specialAdd (0,10), 10)

assertEquals(specialAdd (5, 1), 6)

assertEquals(specialAdd (5, 5), 10)

assertEquals(specialAdd (5,10), 15)

assertEquals(specialAdd (9, 1), 10)

assertEquals(specialAdd (9, 8), 17)

assertEquals(specialAdd (7,10), 17)

}

8.3 Internal Tests

Defining an Internal Test, we apply the following approach consisting of two
steps:

8.3.1 Step 1: Indicate extra test cases

After the internal design and specification are completed, we know much more
about the workings of the program we are developing. The most important
new knowledge is that, by means the representation rule, the more or less vague
External View specifications are often replaced by much more precise conditions
in terms of attribute values. These more precise conditions can result in extra
test cases. In the following paragraphs, we discuss the different causes and
provide these with examples.

Extra test cases due to a representation relation A representation re-
lation limits the possible values of an attribute. Furthermore, a representation
variant can lead to a strengthening or refinement of the specifications of meth-
ods, i.e. it can result in a different structure of the input domain and can add
extra boundary values. Hence, more test cases are often needed.
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Example 8.4 Suppose a class for calculating and holding the solutions of a
second order equation. In the External View, we can say that such an equation
can have zero, one or two solutions. In the Internal View, one can decide to
represent these solutions by an array, which is empty in case of zero solutions
and has one or two elements in case there are one or two solutions. In this case,
test cases should be added to check whether the array contains zero, one or two
solutions corresponding to the input values of the coefficients a, b and c.

Extra test cases due to extra class invariants A representation rule may
also entail extra class invariants, used to limit the range of values allowable for
attributes. Again, these leads to more boundary cases to be tested. Next some
examples which are discussed in the section about the Internal View too.

Example 8.5 If, in a system dealing with calendar dates, the month is repre-
sented by an attribute int m, an extra condition 1 ≤ m ≤ 12 is to be added as a
class invariant (and hence to all preconditions and postconditions).

Example 8.6 If a string is used to represent a person’s name, an extra class
invariant should state that all the characters in the string are letters (and not,
for instance, &).

Example 8.7 If an array is used to store a number of input values, an internal
invariant should limit the number of values to prevent memory overflow.

Example 8.8 Suppose a method that generates a next house number based on
a complex calculation. Where the External View talks about ‘a number’, in the
Internal View the number is restricted to positive integers only.

Extra test cases due to private methods Auxiliary private methods may
have been added. Such methods can be provided with a specification, and can
be tested separately.

Example 8.9 Following the second order equations example, a helper method
discriminant can be added. This method can have it’s own specification and as
such be tested separately.

Example 8.10 Suppose an External Specification about a person’s name states
a condition

n is a valid name

Because this condition occurs at more than one place, avoiding repetition and
achieving coherence may point to the need for an auxiliary private method

private boolean isValidName(String n)
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Extra test cases due to changing pre- and postconditions Besides that
pre- and postconditions of methods can be changed due to representation rela-
tions and/or class invariants, the developer can choose to weaken the precondi-
tion and/or to strengthen the post condition extra. Weakening the precondition,
ultimately to a precondition true, can be part of making the method robust, a
topic that will be discussed in a next section.

Example 8.11 Given the abstract data type Stack, with the constraint that
the values in the stack, from top to bottom, form an ascending sequence. In
order to combine two such stacks into a single one, we produce the following
Java code:

/**

* @merges ascending stacks a and b into a single ascending stack

* @requires a and b are ascending from top to bottom

* @ensures \result is ascending from top to bottom

* and contains all items from a and b

* @pure

*/

public static Stack <Integer > merge(Stack <Integer > a, Stack <Integer > b) {

Stack <Integer > c = new Stack <Integer >();

while (!a.empty () && !b.empty ()) {

if (a.peek() < b.peek ()) {

c.push(a.pop ());

}

else {

c.push(b.pop ());

}

}

while (!a.empty ()) {

c.push(a.pop ());

}

while (!b.empty ()) {

c.push(b.pop ());

}

Stack <Integer > d = new Stack <Integer >();

while (!c.empty ()) {

d.push(c.pop ());

}

return d;

}

Since the last three loops have a similar shape and differ only in the identity
of the stacks involved, they form a good candidate for extracting into a private
method. It is important to notice that, while in the context of merge, all of the
stacks are ordered, this condition is not necessary for the proper working of the
extracted method move. In order to make move reusable in other programs, it is
undesirable to import this precondition blindly from merge.

8.3.2 Step 2: Determine how to test the extra conditions and private
helper methods

Private attributes Private attributes can’t be reached directly by test meth-
ods part of a separate test file. To be able to read the value of a private at-
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tribute, one can add an extra getter. To test whether a class invariant holds
after a method has been executed, the test case can use the extra getter to read
the attribute’s value.

Another method is to add a method that checks the invariant directly.

Example 8.12 Suppose a class has an attribute housenumber, which value must
be >= 0. To test this class invariant, we can add a boolean function checkHouseNumber

of package scope that returns the value of housenumber >= 0.

Adding these boolean methods is not dangerous since it will not enable other
classes to read or change the house number. The test class will then be able to
check an internal invariant by invoking the corresponing boolean method.

Alternatively, we may postpone this check to Code testing; once the code is
available, we may put assert( housenumber >= 0 ); into the code.

Private methods The best way to test a private method is to add, again,
an extra boolean method that test the postcondition after finishing the private
method. In a test file, directly after testing the client method calling the private
method, the postcondition of the private method can be tested by invoking the
extra boolean method.

Another way to test private methods is by declaring them with access mod-
ifier package.

Lastly, in case a private method is not provided with a specification, one can
consider the functioning of this method as part of the functioning of the calling
method which is tested.

Guidance In summary, the guiding steps are:

1. Indicate extra test cases.

2. Determine how to test the extra conditions and private helper methods.

8.4 Code Tests

Code testing is also called structural testing, because the internal structure of
the program’s code is used as information to define test cases.

Coverage criteria The standard approach of Code Tests is to apply one or
more coverage criteria (see for example [3]):

� Statement coverage: each statement in the program is executed at least
once.

� Edge coverage: each edge in control flow graph of the program is traversed
at least once.

� Condition coverage: all possible values of the constituents of compound
conditions are exercised at least once.
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� Path coverage: all paths leading from the initial to the final node of the
program’s control flow graph are traversed.

In these notes, we consider code testing as foreknowledge and, if needed, refer
to the standard literature for more information.

Special code constructions Another aspect is to search for special code
constructions that can fail under certain circumstances.

Example 8.13 Suppose a method call to open a file to be able to read the
content. What happens when the file does not exist? It is thinkable that a
test satisfies all the coverage criteria, but fails in testing this aspect of code
sufficiently.

Example 8.14 A similar situation happens when the value of a variable, say
a, is read from a file: a: = ’read from file’; return 1/a;. This situation can not
be tested by means of JUnit with distinguishing input parameters. Instead, an
assertion should be used: a: = ’read from file’; assert(a != 0); return 1/a;.
Remark: this is exactly what went wrong in the software of Ap ollo 11, where
a sensor gave value zero, used as denominator in a fraction.

The use of Java assertions to check whether the preconditions of called meth-
ods were satisfied is quite different from the JUnit testing we have discussed
earlier. These assertions are not part of test code that is executed separately
during the Run Tests activity, but are placed in the original program code where
it is checked every time the program is run. Moreover, it is not possible to pre-
dict under what circumstances running the code will produce an exception; so
the only option available is to leave the assertion in place (at least provisionally)
and take precautions to catch the exception should it be produced.

Example 8.15 Suppose we implement a method to calculate the roots of a
quadratic formula, i.e. ax2 + bx + c = 0. If we implement the abc-formula in
the body of this method to determine the roots, i.e.

r1, r2 =
−b±

√
b2 − 4ac

2a

then, an extra test case should be added to check the method’s behavior when
coefficient a equals zero. Again, it is conceivable that a test satisfies all the
coverage criteria, but fails in testing this aspect of the code.

Supplementing or not? In some situations Code test cases do not supple-
ment the External View and Internal View test cases.

Example 8.16 Suppose we have the following method compare with @requires

equals true:
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/**

* @desc Compares two integers

* @ensures \result = -1 if x < y

* 0 if x = y

* 1 if x > y

* @pure

*/

public int compare(int x, int y) {

int result = 1;

if (x < y) result = -1;

else if (x == y) result = 0;

return result;

}

A complete set of External View test cases, based on the test models equivalent
classes and boundary values, satisfies all the coverage criteria. Applying for
example the test cases compare(0,2), compare(1,1), and compare(3,0), covers all
code’s statements and conditions, and all edges and and paths in the control
flow graph. The Code does not contain special code contructs that can fail
under certain circumstances. As a result, no extra test cases are needed.

Sometimes, however, implementation specific situations occur that need ad-
ditional test cases.

Example 8.17 When we implement the abc-formula in the body of a method
to calculate the roots of a quadratic formlua (see Example 8.15), then an extra
test case should be added to check the behavior of the method when coefficient
a equals zero. Depending on the External View, this can result in, for example,
an exception. However, had we applied the Newton-Raphson method instead,
then this peculiarity did not exist.

Guidance In summary, the guiding steps are:

1. Choose and apply one or more coverage criteria.

2. Search for special code constructions that can fail.

3. Define corresponding test cases.

Finally, we mention some common points of attention for testing in the next
table.

Type Pay attention to
String null value, empty string, compare strings
Collection null value, null value as element
Array null value, null value as element, index > capacity or index < 0
int, byte, short maximum and minimum values
double, float, ... overflow, maximum and minimum values, comparison of two values
Integer, Double, ... null value, overflow, maximum and minimum values, comparison of two values
Class types null values
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9 Robustness

9.1 Introduction

In the preceding sections we assumed that the methods we develop will always be
called with arguments satisfying the precondition (@requires) of a (sub)specifica-
tion; then we merely have to guarantee that the end result satisfies the corre-
sponding postcondition (@ensures). Providing suitable arguments is the respon-
sibility of the calling environment. However, we can only be assured about its
behavior if we have control of the caller ourselves. This will always be the case
for the parameters of a private method. If our method is to be publicly released
and may be called by software from unknown provenance, it may well be called
with arguments that do not satisfy any precondition. The same is true if the
method deals with unfiltered user input. Failure to specify what will happen
with such unintended arguments then constitutes a security risk. In fact, many
malware patterns actively exploit this possibility.

Therefore a program whose use is not totally under our control should pro-
vide for its use with argument values that we did not intend; in most cases, such
values will make it even impossible to reach the postcondition.

Example 9.1 Suppose we want to make a function that produces a certificate
(a fancy document) for a university course (referred to as ‘this course’) that
produces two grades. Here grades are integers in the range [1..10]. The course
is passed and will merit a certificate if the average of the two grades is at least
6. The specification that expresses this is as follows:

/** @desc Produces a certificate based on two grades a and b

* @requires 1 <= a <= 10

* @requires 1 <= b <= 10

* @requires a + b >= 12

* @ensures \result = a certificate for this course

* @pure

*/

public Certificate getCertificate(int a, int b))

The method’s behavior in this example is only specified for the situation that
the values of the parameters a and b are in the range [1 . . . 10] and that a + b

is in the range [12 . . .]. It is at present not specified what happens when these
requirements are not met, i.e. the effect of a call to method getGrading with for
example parameter values a= 11 and b= −1. The method might even crash. A
specification that does not cater for such inputs is called a happy path specifi-
cation.

A second class of problems can arise outside a programmer’s control but
must be taken into account. Here we can think of a database that cannot be
reached due to communication problems or a file that needs to be read but
does not exist. In these cases, a language like Java itself throws an exception
and these must be caught. This needs to be taken into account in both the
External View, where the design should be extended with an exception, and the
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implementation, where the body of the method in question should be extended
with code to handle or throw the exception further.

9.2 Robust versus non-robust software

A program that can withstand incorrect input is called robust. It is the designer’s
choice whether or not to provide a robust version of the software, depending
on the amount of control over the calling environment and the seriousness of
possible consequences of incorrect use.

Definition 9.1 Robust means that for each combination of inputs we know
how the program responds – input that satisfies the happy path’s precondition
as well as input that does not satisfies the happy path’s precondition.

Robustness means that the union of all preconditions equals true. To achieve
this, we have to add one or more extra subspecifications consisting of precon-
dition and postcondition pairs. These extra subspecifications describe what we
mean with wrong input and how the program is to react if it encounters wrong
input. The tag @robust signals the method is robust.

Not robust means that it is not defined what happens if the precondition is
not satisfied. In this case it is enough to define the happy path.

We can choose for a non-robust version of software in cases where we have
complete control over the caller, and in cases where we genuinely do not care
what happens in case of wrong input. In such cases, we can safely make it the
responsibility of the caller.

Example 9.2 In Example 9.1, it is the caller who has to check the values of
a and b. If the values of a and b satisfy the happy path precondition, the post
condition will hold. If the precondition is not true, the result is undefined.

9.3 Making software robust

Note that the happy path specification in Example 9.1 does not impose any
obligation on the method to check the values of a or b. Possibly, it will
simply go ahead and produce a certificate with any input value. In that case,
it is not really surprising that a group of criminals trading in fake credentials
has exploited this flaw, succeeding in producing certificates for students whose
grades should have led to their failing the course.

In order to limit the use of the method to legal situations, we add sub-
specifications dealing with all possible inputs that do not satisfy the happy
path precondition. As that consists of three separate clauses, we distinguish
three possible problem states, each producing an appropriate error message.
Note, however, that these overlap: it is entirely possible that more than one
clause in the happy path precondition is not satisfied, for example in the call
getCertificate(-1, -1). In Subsection 9.4 we shall discuss the problems this
presents.
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Example 9.3 Adding a separate subspecification for each of the three clauses
in the happy path precondition, we get

/** @desc Produces a certificate based on two grades a and b

* @sub happy path {

* @requires 1 <= a <= 10

* @requires 1 <= b <= 10

* @requires a + b >= 12

* @ensures \result = a certificate for this course

* }

* @sub a not in interval {

* @requires !(1 <= a <= 10)

* @signals ArgumentOutOfRangeException (" first grade not in [1..10]")

* }

* @sub b not in interval {

* @requires !(1 <= b <= 10)

* @signals ArgumentOutOfRangeException (" second grade not in [1..10]")

* }

* @sub a+b not in interval {

* @requires !(a + b <= 12)

* @signals ArgumentOutOfRangeException (" average of grades below 6")

* }

* @robust

* @pure

*/

public Certificate getCertificate(int a, int b)

Guidance

� In case it is impossible to satisfy a precondition that will enable the method
to achieve its purpose, we may want to signal this by raising an exception.
We use the tag @signals for this followed by the type of the exception
produced. But there are more solutions, for example returning a special
value. In the shortest-path algorithm of subsection 10.2 the absence of
any path will produce a path of length 0.

� When undesired user input is detected, the client may be offered the op-
portunity to supply a different input value.

� Adding robustness is not just a matter of adding a few subspecifications to
the External View only. These subspecifications call for analysis, design
and implementation activities. As part of the analysis, we have to analyze
where the information exist to handle the undesired situation effectively.
That can be locally or another location in the call chain. Furthermore,
we have to decide which form of communication can be applied best,
i.e. throwing an exception or returning a special value. As part of the
design, we have to extend the signature with extra information about
the exception that can be thrown or special values that can be returned.
In the implementation, the subspecifications with a @signals tag make
it necessary to raise an exception in the code. Sometimes, a dedicated
exception class has to be implemented.
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� It is possible to aim for robustness from the beginning, and take undesired
inputs into account in all development activities. However, often it is
more practical to ignore robustness until the happy path scenario has
been implemented. Then a second pass through all development activities
is needed, adding robustness to all artifacts.

� It is a good habit to mark the code needed to make a method robust
with inline comments referencing to the subspecifications concerning these
robustness aspects. Example 9.4 shows the code’s structure that can be
used.

� It is good practice to explicitly state in the javadoc if a method is not
robust.

� Finally, each extra subspecification should be translated to extra test
cases, again applying the equivalent class and boundary value techniques.

Example 9.4 The use of comments referencing to the subspecifications to
structure the robustness aspects in code.

public Certificate getCertificate(int a, int b)

throws ArgumentOutOfRangeException {

// a not in interval

if (a < 1 || a > 10) {

throw new ArgumentOutOfRangeException("First grade not in [1..10]");

}

// b not in interval

if (b < 1 || b > 10) {

throw new ArgumentOutOfRangeException("Second grade not in [1..10]");

// a+b not in interval

if (a+b < 12) {

throw new ArgumentOutOfRangeException("Average of grades below 6");

}

// happy path

return new Certificate(a, b);

}

9.4 Overlapping subspecifications

In Example 9.3, there are three subspecifications that signal an exception.
It is, however, quite possible that more than one of these applies: in a call
getCertificate(-1, 2) both the case a not in interval and the case a+b not in interval

have their precondition satisfied. This presents a problem as it is not possible to
end program execution by throwing two exceptions simultaneously. In theory
this could be solved by making these subspecifications non-overlapping: that
would require introducing a separate subspecification for the case where the
first and third problem appear but not the second, and so on for all possible
combinations, thus creating eight subspecifications in all. We consider such
proliferation not feasible. Another solution would be to replace the separate
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preconditions by a single one consisting of their disjunction, and let that pro-
duce an ArgumentOutOfRangeException with the message ‘one or more arguments
do not satisfy one or more value restrictions’. That would result in intolerably
vague error messages.

Consequently we propose to let the specification stand as it is in Example 9.3.
The semantics of this would be that calling the method with arguments that do
not satisfy the happy path precondition produces an exception pinpointing just
one of the problems. Which one it is depends on the implementation and is not
determined by the specification in this form; moreover, repairing the input value
may lead to a new exception pointing to yet another problem. In particular, we
do not demand that the program code will check the subspecifications in the
order in which they appear in the specification, as doing so – and depending on
it – would make the specification far less readable and less understandable.

The above discussion applies only to non-happy path subspecifications that
are supposed to signal an exception. Subspecifications that actually contain a
desired postcondition should always be made nonoverlapping, in order to prevent
contradictory demands on the resulting state.
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10 Systems consisting of more than one class

In the preceding sections, we concentrated on programming assignments that
could be solved by a single class or even a single method. In practice, object-
oriented solutions will most of the time consist of a number of cooperating
classes. Yet the documents we have created – the external view, the internal
view and the annotated code – all refer to a single class. For a system containing
more classes, these documents will have to be provided separately for each of
the participating classes. We now discuss at what stage of development the need
for additional classes arises.

10.1 Auxiliary classes originating in external design

It may be the case that the requirements for the system to be developed need
a second class for expression of the signature in the external design. We have
already seen this phenomenon in Example 4.3, where the constructor of class
Person required a birthdate to be provided in order to make age calculation
possible. This led to the constructor signature

public Person(String name , Date birthDate)

which mentions a class Date, of which as yet we know nothing than that it
represents a calendar date.

When next we proceed to the internal design of class Person, as shown in
Subsection 6.2, we see the usefulness of maintaining a private attribute birthDate

of type Date, chosen because it does not need to be updated every year, in
contrast to the alternative attribute age. The point of having either attribute is
that some form of age information is needed to satisfy the external specification
of method getAge, namely that it returns the person’s age.

Having opted for an attribute of type Date, we used this to formulate, in
Example 6.4, the internal specification of method getAge as follows:

/**

* @desc Returns the person ’s age in years

* @ensures \result = Date. yearsBetween (Date.today , birthDate )

* @pure

*/

public int getAge ()

We now know a lot more of class Date – in fact, it is now obvious that we are using
it to palm off the hard work involving counting days and years. More precisely
stated: we are, in fact, able to give the external design and specification of
class Date. So now the system under development consists of two classes, of
which class Person already has a complete internal view, while class Date is only
available in its external view.

Once the external view of Date is available, we may well ask ourselves whether
it is worthwhile to build this class ourselves: it may be the case that some library
class like GregorianCalendar already provides sufficient functionality.

If we do decide to build Date, there are at this point two options available to
us:
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� We may start working on the code of Person, leaving work on Date until
later;

� We may start working on the internal design of Date, leaving the imple-
mentation of Person until later.

In case this assignment is solved by a team rather than a single programmer,
both options may also be exercised concurrently. The role of the specifications
is precisely to provide a common point of reference for subteams, preventing
misunderstandings about what is to be implemented.

10.2 Example: Shortest path

10.2.1 Assignment

The following exercise is taken verbatim from the year 1 course on Imperative
Programming at Utrecht University, circa 1999.

The program should enable the user to find the shortest, or cheapest,
route between two locations, given a map of a railway or road or telecom
network.

10.2.2 External Analysis

It is not clear from the problem description what ‘a map’ means. The original
Utrecht exercise was meant in part to practice working with GUI elements,
so there the map was literally implemented as an image; users could selected
locations by pointing and clicking. With a view to separation of concerns, we
shall omit GUI issues. Moreover, in order to make the program usable in a
variety of contexts, we use neutral graph theory terms for the objects that do
not imply a choice for railways, roads, or telecom networks. We shall also talk
about the length of an edge or a path, despite the fact that this length may
actually model something else like the cost of traversing it. Hence the exercise
can be stated as the design of a method

public Path shortestPath(Node start , Node finish)

where classes Node and Path still have to be designed. However, there is a decision
still to be made: are we thinking of a directed or an undirected graph? Railway
lines tend to be bidirectional, but roads may be one-way. In order to be as
general as possible, we choose a directed graph: this may be used to simulate
an undirected graph by defining directed edges in both directions, while the
opposite is not possible. Finally, as this is supposed to be an introductory course
exercise, we shall assume no knowledge of Dijkstra’s shortest path algorithm and
construct a straightforward solution without attention to efficiency.

10.2.3 External Design

A natural place to put the shortestPath method is in a class Network, where the
information about the connections and their length is stored. However, when
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exploring a path the information we constantly need on how to proceed is what
nodes are reachable with what traversal length from a given node. Therefore we
decide to use the class Network only for storing the nodes, whereas the reachability
information will reside in the individual nodes. This leads to

public class Network {

public Path shortestPath(Node start , Node finish)

public void addNode(Node newNode)

}

For a Node it is then important to determine the outgoing edges, say as a set.
Hence we need another class Edge that has information about its weight and
endpoint, so we design

public class Node {

public Set <Edge > getEdges ()

public void addEdge(Edge newEdge)

}

public class Edge {

public Node getDestination ()

public int getDistance ()

}

Finally, we need a class Path. Conceptually, we can think of a path as a sequence
of adjacent nodes or a sequence of linked edges. Which representation is chosen
will be decided in the internal design phase. Because we are interested in a
shortest path, we also need to keep track of path lengths. It will clearly also be
necessary to determine whether the given destination is on a candidate path.
We add a boolean function to check this.

public class Path {

public int getLength ()

public boolean contains(Node node)

public void addNode(Node newNode)

}

10.2.4 External Specification

The various classes and methods we have introduced need to be specified in
terms of the problem domain, i.e. the directed graph. This leads to

/**

* @desc Contains a set of nodes and enables the calculation

* of shortest paths in a network

*/

public class Network {

/** @ensures \result = a shortest path between start and finish */

public static Path shortestPath(Node start , Node finish)

/** @ensures newNode has been added to the network */

public void addNode(Node newNode)

}

/**

* @desc Models a node together with its outgoing edges
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*/

public class Node {

/** @ensures \result = the set of edges leading from this node

@pure

*/

public Set <Edge > getEdges ()

/** @ensures newEdge has been added as an outgoing edge from this node */

public addEdge(Edge newEdge)

}

/**

* @desc Models a directed edge in the graph

*/

public class Edge {

/** @ensures \result = the edge ’s endpoint

@pure

*/

public Node getDestination ()

/** @ensures \result = the edge ’s length

@pure

*/

public int getDistance ()

}

/**

* @desc Models a sequence of nodes linked by edges

*/

public class Path {

/** @ensures \result = the total length of the path ’s edges

@pure

*/

public int getLength ()

/** @ensures \result = node occurs on the path

@pure

*/

public boolean contains(Node node)

/** @ensures newNode has been added to the end of the path

* and its length has been increased by addLength

*/

public void addNode(Node newNode , int addLength)

}

10.2.5 Internal Analysis

We have already decided that Path models a sequence of nodes linked by edges;
and that the edges will be administered by the nodes from which they depart.
The remaining decision is to choose a suitable collection type for the nodes
in the path. Here we may observe that, on account of the decisions already
taken, paths may be extended only from their endpoint onward. Therefore it is
simplest to store the nodes of the path in a Stack, with the endpoint as the top
element. Extending the path is then just a push operation.

As to the nodes, we stated above that each node would feature a set of edges.
However, java.util.Set is an interface, so we need to choose an implementation,
for instance java.util.HashSet.
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10.2.6 Internal Design

Adding the proper attributes to the external design, we get

public class Network {

private HashSet <Node > nodes;

public Path shortestPath(Node start , Node finish)

public void addNode(Node newNode)

}

public class Node {

private String name;

private HashSet <Edge > edges;

public Set <Edge > getEdges ()

public void addEdge(Edge newEdge)

}

public class Edge {

private Node destination;

private int distance;

public Node getDestination ()

public int getDistance ()

}

public class Path {

private Stack <Edge > edges;

private int length;

private Node start;

public int getLength ()

public boolean contains(Node node)

public void addNode(Node newNode)

}

10.2.7 Internal Specification

When moving from the external view to the internal view, the information we
need to add is to record how the attributes we have just added correspond to
the graph theoretical concepts from the problem domain. To this end, we add
the following comments:

public class Node {

/** @represents edges is the set of all edges leading from this node */

private HashSet <Edge > edges;

}

public class Edge {

/**

* @represents The end point of the edge is destination ,

* its length is distance

*/

private Node destination;

private int distance;

}

public class Path {

/**
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* @represents The path consists of the contents of attribute

* nodes in reverse order

* @inv length is the total length of the path ’s edges

*/

private Stack <Edge > edges;

private int length;

private Node start;

}

Here we have left out the method specifications: either these were already ade-
quately specified in the external specification or they are just getters and setters
whose semantics are obvious. In practice, all headings and specifications will
reside in the same Java file, so there is never a need to copy previously written
lines.

10.2.8 Code Analysis

As a first approach, we just examine all the paths in the graph (in any order).
Whenever one of these paths reaches the required destination finish, its length is
compared to any previously found completed path with a view to determining
a shortest one. The only thing we must guard against is the possibility of
cyclic paths: whenever we are tempted to add a node already on the path, this
possibility is rejected.

This solution is not efficient. However, for application to a graph of limited
size such as the national railway network its speed and storage requirements are
adequate. Storage may be minimized by observing that many of the paths being
built share their beginning nodes. As these never change, they may actually
share that part rather than retain their own copy. Speed can be optimized that
a shortes path to the final destination also contains a shortest path to each of its
nodes. Therefore whenever we add a node to a path, we may immediately delete
all longer paths to that node because these will never be part of a solution.

10.2.9 Code Design

During the computation of a shortest path we need to keep track of all the
partial paths built so far. The simplest idea would be to use a set as well, but
during the computation this set is modified all the time by removing one path
and adding all its single-edge extensions. Due to the dynamic nature of the set,
it is not feasible to do this in a simple for-statement iterating over its elements.
What we in fact need is the operation ‘pick an arbitrary element from the set’,
which is not provided in the interface. An easy way to solve this is not to take
a set but once again a stack; then the pop operation does exactly what we need.
However, do observe that the order in which the paths occur in this stack is
entirely immaterial.

With this choice, our plan for the code becomes

public Path shortestPath(Node start , Node finish) {

// keep track of set of paths under investigation

Stack <Path > paths = new Stack <Path >();

// remember the shortest path to finish seen so far

59



Path shortest = new Path(start);

do {// take one of the paths under investigation

// if it reaches finish

// compare it to the shortest nonzero path so far

// if it does not reach finish and is not cyclic

// add all one -edge extensions to the set

} while (!paths.isEmpty ());

return shortest;

}

10.2.10 Coding

After these considerations, the algorithm can be coded in straightforward man-
ner. It would be redundant to insert an implementation design where the al-
gorithm is split up into separate steps that could be implemented as private
methods.

public Path shortestPath(Node start , Node finish) {

// keep track of set of paths under investigation

Stack <Path > paths = new Stack <Path >();

// remember the shortest path to finish seen so far

Path shortest = new Path(start);

paths.add(shortest );

do {// take one of the paths under investigation

Path path = paths.pop();

// if it reaches finish

// compare it to the shortest nonzero path so far

if (path.contains(finish )) {

int min = shortest.getLength ();

if (min == 0 || path.getLength () < min) shortest = path;

}

// if it does not reach finish and is not cyclic

// add all one -edge extensions to the set

else {

Set <Edge > edges = path.getDestination (). getEdges ();

for (Edge edge: edges) {

Node destination = edge.getDestination ();

int addLength = edge.getDistance ();

if (!path.contains(destination )) {

Path newPath =

path.addNode(destination , addLength );

paths.push(newPath );

}

}

}

} while (!paths.isEmpty ());

return shortest;

}

From this code it becomes clear what additional tasks we need class Path to per-
form. Apart from getLength() and contains(Node node), whose usefulness we had
already foreseen in the external design phase, it turns out that with the present
algorithm it becomes necessary to have a method addNode(Node newNode, int addLength)

that extends the given path with an edge of length addLength to node newNode.
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Note that, while we have finished class Network, we are still adding function-
ality to the external design of class Path. As argued in Subsection 10.1, not all
classes in a system need to be at the same level of development simultaneously.

Adding a node to the path must be done in a nondestructive manner, because
later on we will want to extend the same original path with a different node.
The implementation of this new method addNode then becomes

public Path addNode(Node newNode , int addLength) {

Path result = clone ();

result.nodes.push(newNode );

result.length += addLength;

return result;

}

Here clone produces a copy of the current path. It overrides Object.clone and
can be defined by

@Override protected Path clone () {

Path result = new Path ();

result.nodes = (Stack <Node >) nodes.clone ();

result.length = length;

return result;

}

10.2.11 Robustness

A major defect of the external specification as given is that it may not be possible
to satisfy the requirement. When there exists no path at all between start and
finish, there is no shortest path either. The specification should definitely take
this possibility into account. Moreover, its occurrence is not an indication of
an error or defect, so throwing an exception is not a proper response. Given
that the return type of shortestPath is Path, the question arises if it is possible
to signal this situation through the Path returned.

Looking at the code of shortestPath, we see that in the absence of paths
reaching finish the method will return a path of length 0 consisting of the
single node start. Since this cannot be the right answer (except in the useless
case where the user explicitly asks for a path that ends where it starts), we may
declare ourselves satisfied with this outcome and we do not need to change the
code. (We admit to a degree of opportunism here.) However, the case needs to
be recorded separately in the specification, as follows:

/** @sub connected {

* @requires there is a path between start and finish

* @ensures \result = a shortest path between start and finish

*}

* @sub unconnected {

* @requires there is no path between start and finish

* @ensures \result = the path from start of length 0

*}

*/

public static Path shortestPath(Node start , Node finish)
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10.2.12 Test construction

As the methods in the auxiliary classes are very simple, we only discuss testing of
method shortestPath. It is clear that, even for a test of the happy path scenario,
we will need to construct a graph, using the methods of Network, Node and Edge,
before we can check whether shortestPath really returns the shortest path in the
graph. So any call to testShortestPath will have to be preceded by a setUp phase
which builds the desired graph.

However, after the discussion of robustness, we see that we also have to check
the case where there is no path at all between certain nodes (subspecification
unconnected) and the case where there is more than one shortest path (so that
subspecification connected is nondeterministic).

Following our test approach, testing the happy path scenario, i.e. there is a
connection between two nodes, we have two equivalent classes: deterministic and
nondeterministic. There are no boundaries. For the non happy path scenario,
we have one equivalent class: unconnected.

A very simple test class satisfying these requirements would look like this:

public class NetworkTest {

private Node roermond;

private Node venlo;

private Node nijmegen;

private Node eindhoven;

private Network network;

private void setUp() {

roermond = new Node("Roermond");

weert = new Node("Weert");

venlo = new Node("Venlo");

nijmegen = new Node("Nijmegen");

eindhoven = new Node("Eindhoven");

roermond.addEdge(new Edge(venlo , 26));

roermond.addEdge(new Edge(weert , 22);

roermond.addEdge(new Edge(eindhoven , 33));

weert.addEdge(new Edge(eindhoven , 11));

venlo.addEdge(new Edge(nijmegen , 55));

eindhoven.addEdge(new Edge(nijmegen , 57));

network = new Network ();

network.addNode(roermond );

network.addNode(weert);

network.addNode(venlo);

network.addNode(nijmegen );

network.addNode(eindhoven );

}

@Test

public void testShortestPathConnected () {

setUp ();

// deterministic

Path path = network.shortestPath(roermond , nijmegen );

assertEquals(" Roermond Venlo Nijmegen", path.toString ());

// nondeterministic

path = network.shortestPath(roermond , eindhoven );
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assertTrue(path.toString.equals(" Roermond Weert Eindhoven") ||

path.toString.equals(" Roermond Eindhoven"))

}

@Test

public void testShortestPathUnconnected () {

setUp ();

path = network.shortestPath(nijmegen , roermond );

assertEquals(" Nijmegen", path.toString ());

}

}

10.3 Auxiliary classes originating in internal design

In the preceding example the auxiliary classes followed naturally from the method
signatures necessary to realize the system requirements. But there are also cases
where the division of responsibilities between classes is geared towards nonfunc-
tional software quality characteristics, such as maintainability and changeability.
Designing such a system requires more creativity. The classes needed are then
not immediately obvious from the exercise text, and will only emerge during
the internal design. Knowledge of UML class diagrams and design patterns
definitely helps. The next subsection contains an example.

10.4 Example: Rental agency

10.4.1 Assignment

The following exercise is taken verbatim from the 2nd year course on Modeling
and System Development at Utrecht University, circa 1999.

A company rents out houses and boats. Some of these are the property
of the company, others belong to private owners. The company pays
taxes only for the objects it owns. Taxes are calculated from value,
differently for houses and boats.

10.4.2 External Analysis

It is implicit in the exercise text that the point is to calculate the tax due on
any rental object. Hence the solution should contain a method

public int tax()

that calculates the amount of tax to be paid. We use the return type int

because tax amounts are always calculated in whole euros, and never so high
that overflow becomes a concern.

10.4.3 External Design

We cannot just put this method into an ordinary class, because the constructor
has to be different for a company property (whose value needs to be recorded)
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and a private property (for which this information is not known). Therefore we
need an abstract class with two subclasses that both contain this method but
have different-looking constructors.

According to tis analysis, as a first approximation we get:

public abstract class Rental {

public abstract int tax();

}

public class CompanyProperty extends Rental {

private int value;

public CompanyProperty(int value)

public int tax()

}

public class PrivateProperty extends Rental {

public PrivateProperty ()

public int tax()

}

10.4.4 External Specification

In terms of the application domain, a company property is one that belongs
to the rental agency, a private property belongs to other owners that use the
services of the company in securing rental contracts. For company properties,
the value in the sense of tax legislation is known. Adding these as comments,
we get:

/**

* @desc This class contains the information about

* a property (boat or house) being rented out by the

* agency and calculate the amount of tax to be paid

*/

public abstract class Rental {

/**

* @ensures \result = the amount of tax to be paid

@pure

*/

public abstract int tax();

}

/**

* @desc A CompanyProperty is a Rental owned by the company

*/

public class CompanyProperty extends Rental {

/**

* @requires value is the legal value in euros

*/

public CompanyProperty(int value)

public int tax()

}

/**

* @desc A PrivateProperty is a Rental not owned by the company
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*/

public class PrivateProperty extends Rental {

public PrivateProperty ()

public int tax()

}

10.4.5 Internal Analysis

Calculating tax is something that only has to be done for company properties:
for private properties the tax is always 0. The remaining problem for company
properties is that the algorithms for calculating the tax from the value uses
a different algorithm in the case of houses and of boats. We could solve this
by using a switch statement in the method’s body, but that would necessitate
changing the code when the company decides to rent out other properties such
as recreational vehicles. Therefore, according to the Open-Closed Principle, we
had better put the algorithms into separate subclasses, say CompanyHouse and
CompanyBoat.

However, in that solution it is hardwired that the distinction between houses
and boats will play no role whatsoever for private properties. This may not be
true for future extensions: for instance, the company would like to keep track of
the amount of fuel provided when renting out a powered boat. Thus, merely to
cater for plausible future developments, it is preferable to put the information
about the nature of the physical object rented out into a separate entity, which
we will call its rental type.

10.4.6 Internal Design

According to our analysis, we decide that the actual calculation of the tax will
be delegated to separate classes House and Boat. When creating a property, its
rental type will have to be communicated to the constructor. To avoid explicit
case analysis, the two rental types will share a common interface. This leads
to the following structure, in which readers familiar with design patterns will
recognize the Bridge pattern.

The code corresponding to this is

public abstract class Rental {

protected RentalType type;

public abstract int tax();

}

public class CompanyProperty extends Rental {

private int value;

public CompanyProperty(RentalType type , int value)

public int tax() {return type.calculateTax(value );}

}

public class PrivateProperty extends Rental {

public PrivateProperty(RentalType type)

public int tax() {return 0;}

}
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Figure 5: UML class diagram of the design

public interface RentalType {

public int calculateTax(int value );

}

public class House implements RentalType {

public int calculateTax(int value)

}

public class Boat implements RentalType {

public int calculateTax(int value)

}

10.4.7 Internal Specification

The task of the internal specification is, first, to show how the entities from
the problem domain are represented by the class attributes, and next, how the
external specifications can be translated into specifications in terms of these
attributes. The first task presents no problems: to class Rental we add

/**

* @represents type is a House or a Boat , according

* to the sort of physical object

*/

protected RentalType type;

and to class CompanyProperty we add

/**

* @represents value is the legal value in euros

*/

private int value;

In order to produce specifications for the various tax-related methods, however,
we cannot proceed further with eliminating domain concepts without going into
the precise rules for computing tax on a house or boat. This part was not
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included in the original exercise, since that only had the purpose to practise
with a realistic instance of the Bridge pattern.

For the sake of the argument, let us assume that the tax on a house is 0.85%
of its legal value, the tax on a boat is 1.52% of its value. (In reality, things
are very much more complicated and subject to local variations.) However, the
‘legal value’ of a house can also be negative, e.g. in the case where the mortgage
burden exceeds the market price. For houses with a negative legal value, no
tax is required. This directly leads to two separate cases in the specification of
method calculateTax in class House:

/** @sub nonnegative {

* @requires value >= 0

* @ensures \result = Math.round (0.0085 * value)

* @pure

* }

* @sub negative {

* @requires value < 0

* @ensures \result = 0

* @pure

* }

*/

public int calculateTax(int value)

10.4.8 Robustness

There is no mortgage exception in the tax laws for boats; hence, a boat can
never have a negative value. (We repeat that nothing in this text accurately
reflects the tax laws of any country.) This means that attempting to create
a Boat object with a negative value is an error that must be signaled to the
enclosing program in order to take corrective measures. So for the constructor
of class CompanyProperty we get

/**

* @sub possible {

* @requires value >= 0 || type instanceof House

* }

* @sub impossible {

* @requires value < 0 && type instanceof Boat

* @signals ValueException (" Boat with negative value ")

* }

*/

public CompanyProperty(RentalType type , int value)

Similarly, method calculateTax of class Boat should signal a ValueException in case
its argument value takes a negative value.

/**

* @sub nonnegative {

* @requires value >= 0

* @ensures \result = Math.round (0.0152 * value)

* @pure

* }

* @sub negative {

* @requires value < 0
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* @signals ValueException (" Boat with negative value ")

* @pure

* }

*/

public int calculateTax(int value)

Observe that case negative will never arise as long as

� this method is only ever called with the attribute value from class CompanyProperty

as argument,

� there is no way to change the attribute value from class CompanyProperty

once the object has been constructed.

In the present state of the software, these conditions are met. Hence there
is no way method calculateTax of class Boat can raise an exception. Still, the
subspecification for this case needs to be present to cater for future extensions.
One reason for this is that Java does not allow to specify that a method can
only be called from one specific code location.

10.4.9 Coding

After the work we have now done, producing the code is trivial. For an example,
the code of method calculateTax of class House is merely

public int calculateTax(int value) {

int tax = 0;

if (value >= 0) tax = Math.round (0.0085 * value );

return tax;

}

10.4.10 Test construction

As the rental objects naturally fall into four different categories, method tax

should be called for a house and for a boat, each with private as well as company
ownership. In the case of company-owned houses, we need to check separately
for positive and negative value. Moreover, to ensure robustness, we should also
check that it is not possible to create a company-owned boat with negative
value. Moreover, to guarantee robustness in case class Boat will in future be
called by other classes than CompanyProperty using a negative value argument, we
will also check whether this will produce the required exception. This leads
to a test class of the form, where the names of the test methods refer to the
corresponding subspecifications:

public class RentalTest {

@Test

public void testTax () {

// house taxes

House house = new House ();

Rental privateHouse = new PrivateProperty(house);

assertEquals (0, privateHouse.tax ());
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Rental positiveHouse = new CompanyProperty(house , 10000);

assertEquals (85, positiveHouse.tax ());

Rental negativeHouse = new CompanyProperty(house , -10000);

assertEquals (0, negativeHouse.tax ());

// boat taxes

Boat boat = new Boat ();

Rental privateBoat = new PrivateProperty(boat);

assertEquals (0, privateBoat.tax ());

Rental companyBoat = new CompanyProperty(boat , 10000);

assertEquals (125, companyBoat.tax ());

}

}

public class CompanyPropertyTest () {

@Test

public void testConstructorImpossible () {

Boat boat = new Boat ();

assertThrows(ValueException.class , () -> {

Rental negativeBoat = new CompanyProperty(boat , -10000);

}

}

}

public class BoatTest () {

@Test

public void testCalculateTaxNonnegative () {

Boat boat = new Boat ();

assertEquals (125, boat.calculateTax (10000));

}

@Test

public void testCalculateTaxNegative () {

Boat boat = new Boat ();

assertThrows(ValueException.class , () -> {

boat.calculateTax ( -10000);

}

}

}

Note that the assertThrown syntax assumes JUnit version 5. The classes testing
exceptions should therefore be preceded with

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

10.5 Developing larger OO systems

If a larger system has to be developed consisting of, say, five or more classes, the
discussed method alone is not sufficient. In such a situation, an overview must
be firstly obtained of the classes that are needed and the relationships between
them. For example, the Unified Process (UP) [7] can be used for this.

In UP, one or more use cases are first drawn up and a domain model is
created. Then a design class diagram is made on the basis of system sequence
diagrams and communication diagrams. This design class diagram consists of
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classes with associations provided with communication direction, attributes and
methods. A design class diagram largely corresponds to the External Design
(classes and public method signatures) and the Internal Design (attributes rep-
resenting the associations to other classes).

This is the starting point for applying our method. Each class can then
be further developed: descriptions can be added to the classes and methods
expressing their responsibilities, the specifications can be added to the External
and Internal Design completing the External View and Internal View, and the
Code View can be realized. Each class can be provided with unit tests based
on the three views.

10.6 Test execution for multi-class systems

Although test construction is an activity that can take place in all phases of
development, whenever sufficient information about the program structure be-
comes available, executing the tests requires the availability of code. Not only
must the method being tested be implemented before its test can be run, any
other methods being called from its code must also be executable. Such a limita-
tion engenders a strict bottom-up order of testing, beginning with the methods
at the leaves of the call tree and step-by-step working up to the root, which
corresponds to the original requirement. This is inefficient because it forces
programmers working on higher node to postpone testing until subsidiary func-
tionality is implemented. And it may not even be possible in cases where there
is mutual dependence between methods.

Therefore testing a multi-class system often necessitates the use of temporary
simulations that may take the place of methods not yet implemented.

Definition 10.1 A stub is a very simple method that can take the place, during
testing, of a method to be developed. A stub produces plausible result of the
correct type, but typically does not execute complex algorithms or interface
with relational databases.

An added advantage of the use of stubs rather than finished implementations is
that it enables testing the calling method with different arbitrary values satis-
fying the specification of the called method, rather than just with the specific
values produced by its implementation, which may not cover the entire range
allowed by the specification. In the latter case it may be that the calling method
functions well within the system as it has been written, but develops unforeseen
problems when the called method is replaced with a different implementation.
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A For the teacher

A.1 How to apply the procedure in a curriculum?

We think the procedure can be taught in the following ways:

1. The procedure can be taught as a whole as part of a Software Engineering
course. Such a course is typically placed in a second or third study year and
requires prior knowledge and experience with programming and testing.

2. The procedure is scattered over several courses. Examples are:

� Functions are discussed in an introductory programming course. In
addition to teaching the syntax and the use of functions, the first
column (External View) and the third column (Code View) can be
applied from the procedure. These views indicate which aspects of
a function can be distinguished, in which order they can be devel-
oped, how this leads to a design, specifications, implementation and
associated tests, and documentation.

� In a first year oo programming course, classes and methods are intro-
duced. Here the approach may be limited to developing an External
View and Code View with associated tests. Attributes are added to
classes, but describing them precisely in the form of an Internal View
is postponed until a follow-up course (see the next bullet).

� In a course about data structures and algorithms, the Internal View
is of special interest besides the External View and Code View. Here,
the translation from domain variables to attributes and correspond-
ing specifications is a critical activity.

A.2 Didactic aspects

The procedure itself is for beginning students a complex thing and learning the
concepts underlying the procedure and how to use the procedure cost time. It
is important to introduce the procedure using simple examples, so the student
has to deal with one complexity. Once the procedure is understood, it can be
used to solve more complex exercises. It is important to understand that the
use of the procedure is not a goal in itself; instead, it provides guidance where
the complexity is great.

The procedure can be explained through traditional classroom teaching and
practiced by homework assignments that students work on alone or in groups.

The procedure can also be taught by having the entire class, or groups of
students, work together on assignments and frequently, after each procedural
step, share their results and discuss these. We think this approach is most
effective. Together, many more aspects are found that need to be taken into
account in a design and specification. It is precisely this experience that is
important!
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