721 research outputs found

    How BAO measurements can fail to detect quintessence

    Full text link
    We model the nonlinear growth of cosmic structure in different dark energy models, using large volume N-body simulations. We consider a range of quintessence models which feature both rapidly and slowly varying dark energy equations of state, and compare the growth of structure to that in a universe with a cosmological constant. The adoption of a quintessence model changes the expansion history of the universe, the form of the linear theory power spectrum and can alter key observables, such as the horizon scale and the distance to last scattering. The difference in structure formation can be explained to first order by the difference in growth factor at a given epoch; this scaling also accounts for the nonlinear growth at the 15% level. We find that quintessence models which feature late (z<2)(z<2), rapid transitions towards w=−1w=-1 in the equation of state, can have identical baryonic acoustic oscillation (BAO) peak positions to those in Λ\LambdaCDM, despite being very different from Λ\LambdaCDM both today and at high redshifts (z∌1000)(z \sim 1000). We find that a second class of models which feature non-negligible amounts of dark energy at early times cannot be distinguished from Λ\LambdaCDM using measurements of the mass function or the BAO. These results highlight the need to accurately model quintessence dark energy in N-body simulations when testing cosmological probes of dynamical dark energy.Comment: 10 pages, 7 figures, to appear in the Invisible Univers International Conference AIP proceedings serie

    Yukawa Matrix for the Neutrino and Lepton Flavour Violation

    Full text link
    We estimate the magnitude of Lepton Flavour Violation (LFV) from the phase of the neutrino Yukawa matrix. In the minimal supersymmetric standard model with right-handed neutrinos, the LFV processes l_i \to l_j \gamma can appear through the slepton mixing, which comes from the renormalization group effect on the right-handed neutrino Yukawa interaction between the Grand Unified Theory scale and the heavy right-handed neutrino mass scale. Two types of phases exist in the neutrino Yukawa matrix. One is the Majorana phase, which can change the magnitude of the LFV branching ratios by a few factor. The other phases relate for the size of the Yukawa hierarchy and its phase effect can change the LFV branching ratios by several orders of magnitude.Comment: Talk given by K. Tsumura at NuFact04, Osaka, Japan, July 26 - August 1,2004 - 3 pages, 2 figure

    Effects of Lightest Neutrino Mass in Leptogenesis

    Full text link
    The effects of the lightest neutrino mass in ``flavoured'' leptogenesis are investigated in the case when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in the neutrino mixing matrix U. The type I see-saw scenario with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The ``orthogonal'' parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. Results for light neutrino mass spectrum with normal and inverted ordering (hierarchy) are obtained. It is shown, in particular, that if the matrix R is real and CP-conserving and the lightest neutrino mass m_3 in the case of inverted hierarchical spectrum lies the interval 5 \times 10^{-4} eV < m_3 < 7 \times 10^{-3} eV, the predicted baryon asymmetry can be larger by a factor of \sim 100 than the asymmetry corresponding to negligible m_3 \cong 0. As consequence, we can have successful thermal leptogenesis for 5 \times 10^{-6} eV < m_3 < 5 \times 10^{-2} eV even if R is real and the only source of CP-violation in leptogenesis is the Majorana and/or Dirac phase(s) in U.Comment: 28 pages, 6 figures; published versio

    MeV sterile neutrinos in low reheating temperature cosmological scenarios

    Full text link
    It is commonly assumed that the cosmological and astrophysical bounds on the mixings of sterile with active neutrinos are much more stringent than those obtained from laboratory measurements. We point out that in scenarios with a very low reheating temperature T_RH << 100 MeV at the end of (the last episode of) inflation or entropy creation, the abundance of sterile neutrinos becomes largely suppressed with respect to that obtained within the standard framework. Thus, in this case cosmological bounds become much less stringent than usually assumed, allowing sterile neutrinos to be ``visible'' in future experiments. Here, we concentrate on massive (mostly sterile) neutrinos heavier than 1 MeV.Comment: 14 pp, 7 fig

    Gravitational wave signatures from discrete flavor symmetries

    Get PDF
    Non-Abelian discrete symmetries have been widely used to explain the patterns of lepton masses and flavor mixing. In these models, a given symmetry is assumed at a high scale and then is spontaneously broken by scalars (the flavons), which acquire vacuum expectation values. Typically, the resulting leading order predictions for the oscillation parameters require corrections in order to comply with neutrino oscillation data. We introduce such corrections through an explicit small breaking of the symmetry. This has the advantage of solving the cosmological problems of these models without resorting to inflation. The explicit breaking induces an energy difference or "bias"between different vacua and drives the evolution of the domain walls, unavoidably produced after the symmetry breaking, towards their annihilation. Importantly, the wall annihilation leads to gravitational waves which may be observed in current and/or future experiments. We show that a distinctive pattern of gravitational waves with multiple overlapped peaks is generated when walls annihilate, which is within the reach of future detectors. We also show that cosmic walls from discrete flavor symmetries can be cosmologically safe for any spontaneous breaking scale between 1 and 1018 GeV, if the bias is chosen adequately, without the need to inflate the walls away. We use as an example a particular A4 model in which an explicit breaking is included in right-handed neutrino mass terms

    Revisiting Leptogenesis in a SUSY SU(5) x T' Model of Flavour

    Get PDF
    We investigate the generation of the baryon asymmetry of the Universe within a SUSY SU(5) x T' model of flavour, which gives rise to realistic masses and mixing patterns for quarks and leptons. The model employs the see-saw mechanism for generation of the light neutrino masses and the baryon asymmetry is produced via leptogenesis. We perform detailed calculations of both the CP violating lepton asymmetries, originating from the decays of the heavy Majorana neutrinos operative in the see-saw mechanism, and of the efficiency factors which account for the lepton asymmetry wash-out processes in the Early Universe. The latter are calculated by solving numerically the system of Boltzmann equations describing the generation and the evolution of the lepton asymmetries. The baryon asymmetry in the model considered is proportional to the J_{CP} factor, which determines the magnitude of CP violation effects in the oscillations of flavour neutrinos. The leptogenesis scale can be sufficiently low, allowing to avoid the potential gravitino problem.Comment: 14 pages, 1 figure; published versio

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0ÎœÎČÎČ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0ÎœÎČÎČ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.1⋅10241.1\cdot 10^{24} y and 3.6⋅10233.6\cdot 10^{23} y, respectively. Additionally for 0ÎœÎČÎČ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.3⋅1022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.2⋅1021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.8⋅1022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2ÎœÎČÎČ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009

    Immunohistochemical localization of IGF-I, IGF-II and MSTN proteins during development of triploid sea bass (Dicentrarchus labrax)

    Get PDF
    The cellular localization of IGF-I, IGF-II and MSTN proteins was investigated during ontogenesis of triploid sea bass (Dicentrarchus labrax) by an immunohistochemical approach. The results were compared with those observed in diploids. IGF-I immunostaining was mainly observed in skin, skeletal muscle, intestine and gills of both diploids and triploids. From day 30 of larval life, IGF-I immunoreactivity observed in skeletal muscle, intestine, gills and kidney was stronger in triploids than in diploids. At day 30, triploids exhibited a standard length significantly higher than the one of diploids. Although IGF-II and MSTN immunoreactivity was detectable in different tissues and organs, no differences between diploids and triploids were observed. The spatial localization of IGF-I, IGF-II and MSTN proteins detected in this study is in agreement with previous findings on the distribution of these proteins in diploid larvae and fry. The highest IGF-I immunoreactivity observed in triploids suggests a possible involvement of ploidy in their growth performance
    • 

    corecore