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We investigate the generation of the baryon asymmetry of the Universe within a SUSY SU(5) × T ′
model of flavour, which gives rise to realistic masses and mixing patterns for quarks and leptons. The
model employs the see-saw mechanism for generation of the light neutrino masses and the baryon
asymmetry is produced via leptogenesis. We perform detailed calculations of both the CP violating lepton
asymmetries, originating from the decays of the heavy Majorana neutrinos operative in the see-saw
mechanism, and of the efficiency factors which account for the lepton asymmetry wash-out processes
in the Early Universe. The latter are calculated by solving numerically the system of Boltzmann equations
describing the generation and the evolution of the lepton asymmetries. The baryon asymmetry in the
model considered is proportional to the JCP factor, which determines the magnitude of CP violation
effects in the oscillations of flavour neutrinos. The leptogenesis scale can be sufficiently low, allowing to
avoid the potential gravitino problem.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the present Letter we consider the generation of the baryon asymmetry of the Universe in the SUSY model of flavour based on the
SU(5) × T ′ symmetry, which was developed in [1,2]. The model possesses a number of appealing features which makes it worthwhile to
investigate whether it provides also a viable scenario for the baryon asymmetry generation.

The group T ′ is the double covering of the symmetry group of the tetrahedron A4 (see, e.g., [3]). It was realised by a number of authors
(see, e.g., [4]) that the T ′ symmetry can be used for the description of masses and mixing of both leptons and quarks. The SU(5) × T ′
model of flavour of interest accounts successfully for the pattern of quark masses and mixing, including the CP violation in the quark
sector [2]. It is free of discrete gauge anomalies [5] and gives rise to realistic masses and mixing of the leptons as well.

The SU(5) × T ′ model proposed in [1,2] we will discuss in the present Letter, includes three right-handed (RH) neutrino fields NlR ,
l = e,μ, τ , which possess a Majorana mass term. The light neutrino masses are generated by the type I see-saw mechanism and are
naturally small. The light neutrino mass spectrum is predicted [6] to be with normal ordering and is hierarchical (throughout this Letter
we use the definitions and the conventions given in [7]). The neutrino masses m j , j = 1,2,3, are functions of two real parameters of
the model [2,6]. The latter can be determined by using the values of the two neutrino mass squared differences, �m2

21 and �m2
31, or

of �m2
21 and the ratio r = �m2

21/�m2
31, obtained in the global analyses of the neutrino oscillation data. Using the best fit values of

�m2
21 = 7.58 × 10−5 eV2 and �m2

31 = 2.35 × 10−3 eV2, found in the analysis performed in [8], we have [6]:

m1 = 1.14 × 10−3 eV, m2 = 8.78 × 10−3 eV, m3 = 4.867 × 10−2 eV. (1)

The values of m1, m2 and m3 are essentially fixed: the uncertainties corresponding to the 3σ ranges of allowed values of �m2
21 and r are

remarkably small [6].
The part of the Pontecorvo, Maki, Nakagawa and Sakata (PMNS) neutrino mixing matrix (see [7]), resulting from the diagonalisation

of the Majorana mass term of the left-handed flavour neutrino fields νlL(x), l = e,μ, τ , which is generated by the see-saw mechanism, is
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of the tri-bimaximal form [9]. The latter is “corrected” by the unitary matrix originating from the diagonalisation of the charged lepton
mass matrix Me (for a general discussion of such corrections see, e.g., [10–12]). Since the model is based on the SU(5) GUT symmetry,
the charged lepton mass matrix is related to the down-quark mass matrix Md . The model exploits the Georgi–Jarlskog approach for
obtaining viable relations between the masses of the muon and the s-quark [1,2]. The Cabibbo angle is given by the “standard” expression:
θc ∼= √

md/ms , md and ms being the masses of the d- and s- quarks. As a consequence, in particular, of the connection between Me and
Md , the smallest angle in the neutrino mixing matrix θ13, is related to the Cabibbo angle [2]:

sin θ13 ∼= 1

3
√

2
sin θc . (2)

Here we implicitly assumed the “standard” parametrisation of the PMNS matrix [7]:

U =
⎛
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠diag

(
1, ei

α21
2 , ei

α31
2

)
, (3)

where ci j = cos θi j and si j = sin θi j , 0 � θi j � π/2, δ and α j1, j = 2,3, are the Dirac and the two Majorana CP violation phases [13],
0 � δ � 2π and, in general [14], 0 � α j1/2 � 2π . We will use this parametrisation in the discussion which follows.

The CP violation, predicted by the model, can entirely be geometrical in origin [2]. This interesting aspect of the SU(5) × T ′ model
we will consider is a consequence of one of the special properties of the group T ′ , namely, that its group theoretical Clebsch–Gordan
(CG) coefficients are intrinsically complex [15]. The only dominant source of CP violation in the lepton sector of the model is the Dirac
phase δ. The two Majorana phases present in the PMNS neutrino mixing matrix, α21 and α31, are predicted to leading order to have CP
conserving values. In the standard parametrisation of UPMNS we have: α21 ∼= 0 and α31 ∼= π . Higher order corrections induce small CP
violating deviations of the order of few degrees from these CP conserving values of the two phases [6].

The Dirac phase δ in the PMNS matrix is induced effectively by the complex CG coefficients of the group T ′ . As we shall see in
Section 2, δ can take two values in the model considered. One was identified in [2] and is equal approximately to δ ∼= 5π/4 = 225◦ , the
precise value being

δ ∼= 226.9◦. (4)

The second possible value of δ is given to leading order, as will be discussed in Section 2, by

δ ∼= π

4
= 45◦. (5)

The tri-bimaximal mixing value of the solar neutrino mixing angle θ12, which corresponds to sin2 θ12 = 1/3, is corrected by a quantity
which, as it follows from the general form of such corrections [10–12], is determined by the angle θ13 and the Dirac phase δ:

sin2 θ12 ∼= 1

3
+ 2

√
2

3
sin θ13 cos δ. (6)

In the SU(5) × T ′ model considered, θ13 is related to the Cabibbo angle, Eq. (2).
The rephasing invariant associated with the Dirac phase δ [16], JCP , which determines the magnitude of CP violation effects in neutrino

oscillations [17], predicted by the model to leading order reads [6,10,11]:

JCP ∼= 1

3
√

2
sin θ13 sin δ ∼= 1

18
sin θc sin δ. (7)

For δ ∼= 5π/4, Eq. (4), the correction to the TBM value of sin2 θ12 given in Eq. (6), is negative and sin2 θ12 ∼= 0.299, where we have used
Eq. (2) and sin θc = 0.22. This value lies within the 1σ allowed range, found in the global data analysis [8]. We also have, including the
higher order corrections [2]: JCP ∼= −9.66 × 10−3. If δ ∼= π

4 , Eq. (5), the correction to the TBM value of sin2 θ12 is positive and sin2 θ12 ∼=
0.37. According to the analyses performed in [8] and in [18], the current neutrino oscillation data imply respectively sin2 θ12 � 0.36 and
sin2 θ12 � 0.374 at 3σ . Thus, the case of δ ∼= π

4 is disfavoured by the data. For the JCP factor in this case we get: JCP ∼= +9.95 × 10−3.
Since the neutrino masses, the neutrino mixing angle and the CP violating phases in the PMNS matrix have essentially fixed values,

the model provides also specific predictions [6] for the sum of the three neutrino masses,

m1 + m2 + m3 ∼= 5.9 × 10−2 eV, (8)

as well as for the effective Majorana mass in neutrinoless double-beta decay (see, e.g., [19]):
∣∣〈m〉∣∣ ∼= 3.4 × 10−3 eV. (9)

It should be clear from the preceding discussion that the SU(5)× T ′ model of flavour of interest is remarkably predictive: the values of
the neutrino masses, the type of the neutrino mass spectrum, the values of the neutrino mixing angles and the CP violating phases in the
neutrino mixing matrix, as well as the effective Majorana mass in neutrinoless double beta decay, obtained in the model are essentially
free of ambiguities. The predictions for sin θ13, sin2 θ12, δ and JCP can be tested directly in the upcoming neutrino oscillation experiments.
The value of sin θ13 one gets in the model, for instance, is relatively small, sin θ13 ∼= 0.058.2 It lies outside the 2σ , but within the 3σ ,

2 A larger value of θ13 can, in principle, be obtained along the lines discussed in Ref. [12].
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ranges of allowed values of sin θ13, determined in the global analyses of the current neutrino oscillation data [8,20]. The results of the
three reactor ν̄e experiments on θ13, Double Chooz [21], RENO [22] and Daya Bay [23], which are currently taking data, can provide a
critical test of the model.

In the present Letter we investigate the prediction of the SU(5) × T ′ model of flavour proposed in [1,2] for the baryon asymmetry
of the Universe. The latter is generated in the model via the leptogenesis mechanism [24,25]. The dominant source of CP violation in
the lepton sector and in leptogenesis is the Dirac phase δ.3 Therefore there is a direct connection between the baryon asymmetry of the
Universe and the CP violation in neutrino oscillations.

The generation of the baryon asymmetry in the SU(5) × T ′ model of interest was studied in [27]. However, the authors of [27] limited
the discussion of the baryon asymmetry generation to the calculation of the CP asymmetries in the additive lepton charges, ε�

i , generated
in the heavy Majorana neutrino decays, � = e,μ, τ , i = 1,2,3. They based their conclusions on the results obtained for these asymmetries.
In the present Letter we perform a complete calculation of the baryon asymmetry, i.e., we calculate not only the asymmetries ε�

i , but
also the corresponding efficiency factors which account for the effects of the CP asymmetry wash-out processes, taking place in the Early
Universe. The efficiency factors are computed by solving numerically the Boltzmann equations, which describe the evolution of the CP
violating asymmetries in the Early Universe. The results we obtain for the lepton asymmetries ε�

i do not agree with those found in [27]
and our results for the baryon asymmetry contradict the claims made in [27].

2. Ingredients

In the L–R convention in which the neutrino mass terms are written with the RH neutrino fields on the right, the superpotential of
the model leads [1,2] to the following neutrino Dirac mass matrix,

MD =
⎛
⎝

2ξ0 + η0 −ξ0 −ξ0

−ξ0 2ξ0 −ξ0 + η0

−ξ0 −ξ0 + η0 2ξ0

⎞
⎠ ζ0ζ

′
0 vu ≡ Ỹν vu, (10)

and to the following Majorana mass matrix of the RH neutrinos,

MRR =
⎛
⎝

1 0 0

0 0 1

0 1 0

⎞
⎠ s0Λ. (11)

In Eqs. (10) and (11), ξ0, η0, ζ0, ζ ′
0 and s0 are dimensionless real parameters, Λ is the scale above which the T ′ symmetry is exact, Ỹν

is the matrix of the neutrino Yukawa couplings in the basis in which the charged lepton and the RH neutrino mass matrices are not
diagonal, and vu is the vacuum expectation value of the “up” Higgs doublet field of the SUSY extensions of the Standard Model. Thus,
the neutrino Dirac mass matrix in the model, MD , is real and symmetric. As can be easily shown, it is diagonalised by the tri-bimaximal
mixing (TBM) matrix:

UTBM =
⎛
⎝

√
2/3

√
1/3 0

−√
1/6

√
1/3 −√

1/2

−√
1/6

√
1/3

√
1/2

⎞
⎠ . (12)

We have:

U T
TBMMD UTBM = Mdiag

D = diag(3ξ0 + η0, η0,3ξ0 − η0)ζ0ζ
′
0 vu (13)

where all elements in the diagonal matrix Mdiag
D are real.

The RH neutrino Majorana mass matrix MRR is diagonalised by the unitary matrix S:

S T MRR S = DN = diag(M1, M2, M3) = s0Λdiag(1,1,1), M j > 0, j = 1,2,3, (14)

where

S =
⎛
⎝

1 0 0

0 1/
√

2 −i/
√

2

0 1/
√

2 i/
√

2

⎞
⎠ . (15)

and M j are the masses of the heavy Majorana neutrinos N j (possessing definite masses),

N j = S†
jl NlR + S T

jlC(N̄lR)T = C(N̄ j)
T , j = 1,2,3, (16)

C being the charge conjugation matrix. Thus, to leading order, the masses of the three heavy Majorana neutrinos N j coincide, M j = s0Λ ≡
M , j = 1,2,3. It follows from Eq. (14) that S∗ S† is a real matrix, so S∗ S† = S S T .

The effective Majorana mass matrix of the left-handed (LH) flavour neutrinos, Mν , which is generated by the see-saw mechanism,

Mν = −MD M−1
RR MT

D , (17)

3 The Casas–Ibarra matrix [26], which can be an additional source of CP violation in leptogenesis, is real in the model under discussion [6].
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(LM
νL

= − 1
2 ν̄L Mνν

c
R + h.c.) is also diagonalised by the TBM matrix (12),

U T
TBM MνUTBM = diag

(
(3ξ0 + η0)

2, η2
0,−(−3ξ0 + η0)

2) (ζ0ζ
′
0 vu)2

s0Λ
= Q diag(m1,m2,m3)Q T . (18)

Here Q = i diag(1,1,±i) is the matrix which determines, as we shall see, the leading order values of the two Majorana phases in the
PMNS matrix, and mk > 0, k = 1,2,3, are the masses of the three light Majorana neutrinos,

m1 ≡ (X + 3Z)2

M
, m2 ≡ X2

M
, m3 ≡ (X − 3Z)2

M
, (19)

where X ≡ η0(ζ0ζ
′
0 vu) and Z ≡ ξ0(ζ0ζ

′
0 vu). In what follows we will ignore the overall unphysical factor i in Q . The values of m j given in

Eq. (1) correspond to [6] X = ±1.71 × 10−2 vu , and Z = ∓7.74 × 10−3 vu .
The charged lepton mass matrix Me is not diagonal; it is diagonalised by a bi-unitary transformation: Me = V eR Md

e U †
e , where V eR

and Ue are unitary matrices and Md
e = diag(me,mμ,mτ ), m� being the mass of the charged lepton �, � = e,μ, τ . The matrix Ue , which

enters into the expression for the PMNS matrix, U = U †
e Uν , diagonalises the matrix M†

e Me . The charged lepton mass matrix Me (with the
corresponding mass term written in the R–L convention in terms of the chiral charged lepton fields l′aR and l′aL ) has the following form [2]:

Me =
⎛
⎝

0 −(1 − i)φ0ψ
′
0 φ0ψ

′
0

(1 + i)φ0ψ
′
0 −3ψ0ζ

′
0 φ0ψ

′
0

0 0 ζ0

⎞
⎠ yd vdφ0. (20)

It is related to the down-type quark mass matrix Md via the well-known SU(5) relation: Me = MT
d , with the factor (−3) in Me replaced

by 1 in Md . The up-type quark mass matrix in the model has the form [2]:

Mu =
⎛
⎜⎝

iφ′3
0 ( 1−i

2 )φ′3
0 0

( 1−i
2 )φ′3

0 φ′3
0 + (1 − i

2 )φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1

⎞
⎟⎠ yt vu. (21)

In Eqs. (20) and (21), φ0, ψ ′
0, φ′

0, ψ0, yd and yt are real dimensionless parameters, yd and yt are Yukawa couplings and vd is the vacuum
expectation value of the “down” type Higgs doublet of the SUSY extension of the Standard Model.

Fitting the quark sector observables and charged lepton masses one finds that [2] two of the three angles, present in the “standard-like”
parametrisation of the matrix Ue , are extremely small, sin θe

13
∼= 1.3 × 10−5, sin θe

23
∼= 1.5 × 10−4, while the third satisfies:

sin θe
12 = 1

3
sin θc . (22)

Thus, to a very good approximation one can set θe
13 = θe

23 = 0, and in this approximation Ue takes the form [6]: Ue = ΦR12(θ
e
12), where

Φ = diag(1, eiϕ,1) and

R12
(
θe

12

) =
⎛
⎝

cos θe
12 sin θe

12 0

− sin θe
12 cos θe

12 0

0 0 1

⎞
⎠ . (23)

It follows from the above discussion that in the basis in which the charged lepton and the RH neutrino mass matrices are diagonal,
the matrix of neutrino Yukawa couplings Yν has the form:

Yν = U †
e Ỹν S = 1

vu
U †

e MD S. (24)

In the same basis, the Majorana mass term for the LH flavour neutrinos, generated by the see-saw mechanism, is given by:

Mν = −v2
u Yν D−1

N Y T
ν = U DνU T , (25)

where DN ≡ diag(M1, M2, M3) = M diag(1,1,1), Dν ≡ diag(m1,m2,m3) and U is the PMNS matrix,

U = U †
eUTBM Q . (26)

Using the approximate expression for Ue = ΦR12(θ
e
12), with Φ = diag(1, eiϕ,1) and R12(θ

e
12) given by Eq. (23), we get:

U ∼=

⎛
⎜⎝

√
2/3ce

12 + √
1/6se

12e−iϕ √
1/3(ce

12 − se
12e−iϕ)

√
1/2se

12e−iϕ

√
2/3se

12 − √
1/6ce

12e−iϕ √
1/3(se

12 + ce
12e−iϕ) −√

1/2ce
12e−iϕ

−√
1/6

√
1/3

√
1/2

⎞
⎟⎠ Q , (27)

where ce
12 = cos θe

12, se
12 = sin θe

12.
As was shown in [6,12], the phase ϕ in Eq. (27) and the Dirac phase δ in Eq. (3) are related as follows:

δ = ϕ + π. (28)
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Comparing the expressions in the left-hand and right-hand sides of the equation M†
e Me = Ue(Md

e )
2U †

e and assuming first following [2]
that φ0ψ

′
0ψ0ζ

′
0 < 0 and y′ψ0ζ0 < 0 (with cos θe

12 sin θe
12 > 0), one finds [6]:

ϕ = π

4
, δ = 5

4
π. (29)

The choice φ0ψ
′
0ψ0ζ

′
0 < 0 together with the choice y′ψ0ζ0 < 0 (see Eq. (21)) allows to get the best description of the quark masses and

mixing, possible in the model considered. However, one gets similar description also in the case of φ0ψ
′
0ψ0ζ

′
0 > 0 and y′ψ0ζ0 > 0.4 In this

latter case we get for ϕ and δ:

ϕ = π

4
± π, δ = π

4
. (30)

Numerically, for ϕ = π/4 and se
12 = 0.22/3 (see Eq. (22)), the PMNS matrix, Eq. (27), reads:

U �
⎛
⎝

0.836e−i1.452◦
0.546ei3.139◦

0.0518e−i45.000◦

0.367ei173.380◦
0.607ei2.829◦ −0.705

−0.408 0.577 0.707

⎞
⎠ Q . (31)

Taking into account the corrections due to the non-zero values of the angles θe
13 and θe

23 in U †
e on finds [2]:

U �
⎛
⎝

0.838e−i1.626◦
0.543ei3.551◦

0.0582e−i45.000◦

0.362ei172.463◦
0.610ei3.160◦ −0.705

−0.408 0.577 0.707

⎞
⎠ Q . (32)

Obviously, the differences between the approximate and the “exact” matrices (31) and (32) are negligibly small.
The leading order predictions of the SU(5) × T ′ model for sin θ13, sin2 θ12 and sin2 θ23 were given in the Introduction (see Eqs. (2), (4),

(6) and the related discussions). They can be obtained by comparing Eqs. (3) and (27) and using Eq. (22).
Eqs. (31) and (32) allow to determine the values of the Majorana phases α21 and α31. In the parametrisation in which the PMNS

matrix is written in Eqs. (27), (31) and (32) they are fixed by the matrix Q = diag(1,1,±i) and read α21/2 = 0 and α31/2 = π/2 or 3π/2.
Thus, α21 and α31 are CP conserving. Note, however, that the parametrisation of the PMNS matrix in Eqs. (27), (31) and (32) does not
coincide with the standard one. Thus, in order to get the values of the Dirac and Majorana phases δ and α21/2 and α31/2 of the standard
parametrisation of the PMNS matrix, one has to bring the expressions (31) or (32) in a form which corresponds to the “standard” one in
Eq. (3). This can be done by using the freedom of multiplying the rows of the PMNS matrix with arbitrary phases and by shifting some
of the common phases of the columns to a diagonal phase matrix Q̃ . The results for the “approximate” and “exact” numerical matrices,
Eqs. (31) and (32), is:

U �
⎛
⎝

0.836 0.546 0.0518e−i226.69◦

−0.367e−i3.48◦
0.607ei1.38◦

0.705

0.408ei3.14◦ −0.577e−i1.45◦
0.707

⎞
⎠ Q̃ a Q , (33)

and [6]

U �
⎛
⎝

0.838 0.543 0.0582e−i226.93◦

−0.362e−i3.99◦
0.610ei1.53◦

0.705

0.408ei3.55◦ −0.577e−i1.63◦
0.707

⎞
⎠ Q̃ e Q , (34)

where Q̃ a = diag(e−i3.14◦
, ei1.45◦

,−1) and Q̃ e = diag(e−i3.55◦
, ei1.63◦

,−1). Now comparing Eq. (33) and Eq. (34) with Eq. (3) we can obtain
the “approximate” and “exact” values of the Dirac and the two Majorana phases of the standard parametrisation of the PMNS matrix,
predicted by the model. For the Dirac phase, for instance, we find, respectively, δ ∼= 226.7◦ and [2] δ ∼= 226.9◦ . Note that the Majorana
phases α21/2 and α31/2 in the standard parametrisation are not CP conserving [6]: due to the matrix Q̃ a (or Q̃ e) they get small CP
violating corrections to the CP conserving values 0 and π/2 or 3π/2.

The high precision provided by the expression (27) for the PMNS matrix is more than sufficient for the purposes of our investiga-
tion and we will use it in our further analysis. This allows to get simple analytic results for the CP violating asymmetries, relevant in
leptogenesis, which in turn makes transparent and easy to interpret the results we are going to obtain.

Eq. (25), as is well known, allows to express Yν in terms of U , Dν , DN and an orthogonal (in general, complex) matrix [26] R ,
RT R = R RT = 1:

Yν = 1

vu
U

√
Dν R

√
DN . (35)

From Eqs. (24)–(35) and (13), we obtain the following exact expression for the matrix R:

R = (√
Dν

)−1
Q ∗Mdiag

D U T
TBM S

(√
DN

)−1
. (36)

Using the explicit forms of Q = diag(1,1,±i), Mdiag
D , UTBM , S and DN = M diag(1,1,1) we get:

4 This observation is based on numerical results obtained by M. Spinrath. We thank M. Spinrath for communicating to us the results of his numerical analysis.
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R =

⎛
⎜⎜⎝

−
√

2
3

1√
3

0

1√
3

√
2
3 0

0 0 −1

⎞
⎟⎟⎠ . (37)

The same expression for the matrix R was obtained in [27]. Thus, in the SU(5) × T ′ model considered, the R matrix is real, i.e., CP
conserving [28] (see also [29]), and symmetric, R∗ = R , RT = R , and the elements Rk3 = R3k = 0, k = 1,2. We note that the signs of the
entries in the 1–2 sector of R depend on the signs of X and Z : the signs in Eq. (37) correspond to X > 0 and Z < 0 (see Eq. (19) and the
related comments).

3. Radiatively induced leptogenesis

As we have seen, the three heavy Majorana neutrinos N j are degenerate in mass at the scale M X at which the Majorana mass matrix of
the RH neutrinos is generated. We will assume that this scale does not exceed the GUT scale, MGUT = 2 × 1016 GeV: M X � MGUT . Actually,
in the SUSY SU(5) × T ′ model considered, we have M X = MGUT . Given the fact that the R matrix is real and CP conserving, the baryon
asymmetry can only be generated in the regime of flavoured leptogenesis [30,31]. The regimes of 2-flavour and 3-flavour leptogenesis are
realised, in general, for values of the masses M j ∼= M , j = 1,2,3, of the heavy Majorana neutrinos satisfying [28] M � T < (1 + tan2 β) ×
1012 GeV and M � T < (1 + tan2 β) × 109 GeV, respectively, where T is the temperature of the Early Universe and tanβ = vu/vd is the

ratio of the vacuum expectation values of the two Higgs doublet fields, present in the SUSY theories, v ≡
√

v2
u + v2

d = 174 GeV. If the

heavy Majorana neutrinos would be degenerate in mass at the scale (temperatures) at which the flavoured leptogenesis can take place,
as is well known, no net baryon asymmetry would be generated. However, if leptogenesis takes place at a scale MFLG < (�)M X , higher
order corrections accounted for by the renormalisation group (RG) equations describing the change of the masses M j with the change
of the energy scale from M X to MFLG � (1 + tan2 β) × 1012 GeV, lift the degeneracy of N j [32–35], generating relatively small splittings
between M1, M2 and M3: �Mij(MFLG) ≡ Mi(MFLG) − M j(MFLG) = 0, i = j = 1,2,3. Since the mass splittings |�Mij(MFLG)| thus generated
are exceedingly small, we expect the baryon asymmetry to be generated in the regime of resonant flavoured leptogenesis [28,36].

In the case of resonant flavoured leptogenesis, the CP violating asymmetry in the lepton charge Ll , l = e,μ, τ , generated in the out of
equilibrium decays of the heavy Majorana neutrino N j taking place at the scale MFLG , is given by [28]:

ε�
i ≡ Γ (Ni → �−H+) + Γ (Ni → ν�H0) − Γ (Ni → �+H−) − Γ (Ni → ν̄� H̄0)

Γ (Ni → �−H+) + Γ (Ni → ν�H0) + Γ (Ni → �+H−) + Γ (Ni → ν̄� H̄0)
= − 1

8π

∑
j =i

Si jI�
i j . (38)

Here

Sij = Mi M j�M2
ji

(�M2
ji)

2 + M2
i Γ 2

j

, I�
i j = Im[(Y †

ν Yν)i j(Yν)∗
�,i(Yν)�, j]

(Y †
ν Yν)ii

, (39)

where Yν is defined in Eqs. (35),

Γ j = 1

8π

(
Y †

ν Yν

)
j j M j, (40)

and

�M2
ji ≡ M2

j − M2
i

∼= 2M2
i δN

ji , δN
ji = M j

Mi
− 1, j = i. (41)

The parameter δN
ji describes the deviation from complete degeneracy of the masses of the heavy Majorana neutrinos N j and Ni . All

quantities which appear in Eqs. (38)–(41) should be evaluated at the leptogenesis scale MFLG . The baryon asymmetry is generated in the
regime of resonant leptogenesis if at MFLG the following condition is fulfilled:

MiΓ j
∼= �M2

ji, i = j. (42)

We have discussed above the asymmetry generated in the decays of the heavy Majorana neutrinos Ni into the Higgs and lepton
doublets. A lepton flavour asymmetry ε�̃

i is also generated from the out-of-equilibrium decays of Ni in the Higgsino and slepton doublets �̃.

Similarly, the sneutrinos Ñi generate CP asymmetries ε�

ĩ
and ε�̃

ĩ
with, respectively, � and �̃ in the final state. As can be shown, one has

neglecting soft SUSY breaking terms: ε�
i = ε�̃

i = ε�

ĩ
= ε�̃

ĩ
.

It follows from Eq. (39) that the necessary conditions for a successful resonant flavoured leptogenesis include: (i) the presence of CP
violating phases in the matrix of neutrino Yukawa couplings Yν ; (ii) non-vanishing off-diagonal elements of the matrix Y †

ν Yν : (Y †
ν Yν)i j = 0

for i = j; (iii) non-degeneracy of the heavy Majorana neutrino masses Mi : δN
ji = 0, i = j. The first requirement is fulfilled by the presence

of the CP violating phases in the neutrino mixing matrix U . The second and third general requirements are satisfied, as we are going to
discuss next, owing to the RG corrections in the quantities Mi and Yν , which have to be included when the latter are evaluated at the
leptogenesis scale MFLG .

The RG running of the heavy Majorana neutrino masses Mi depends on the quantity Y †
ν Yν [33]. It proves convenient to work at the

scale M X in a basis of the heavy Majorana neutrino fields in which the matrix Y †
ν Yν is diagonal. This can be achieved by performing an
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Table 1
Values of the heavy Majorana mass splitting parameter δN

ij .

M X /M = 2 × 106 M X /M = 2 × 105 M X /M = 2 × 104

δN
21 −9.28 × 10−7 −7.81 × 10−6 −6.33 × 10−5

δN
31 −5.80 × 10−6 −4.88 × 10−5 −3.96 × 10−4

δN
32 −4.87 × 10−6 −4.10 × 10−5 −3.33 × 10−4

orthogonal transformation of N j . The latter can be done without affecting the heavy Majorana neutrino mass term since at the scale of
interest the heavy Majorana neutrinos N j are degenerate in mass. The change of basis, N j = O T

jk N ′
k , where O is an orthogonal matrix,

implies the following change of the matrix of neutrino Yukawa couplings: Y ′
ν = Yν O . Using Eq. (35) and the facts that DN = M diag(1,1,1)

and the matrix R is real and orthogonal, there always exists an orthogonal matrix O such that R O , and correspondingly Y ′ †
ν Y ′

ν , are
diagonal matrices. Taking into account the explicit form of the matrix R in the model considered, Eq. (37), in what follows we will use

O ≡
⎛
⎝

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞
⎠ =

⎛
⎜⎜⎝

√
2
3

1√
3

0

− 1√
3

√
2
3 0

0 0 1

⎞
⎟⎟⎠ . (43)

It is easy to verify that R O = diag(−1,1,−1) ≡ I , I j j = η j , with η2 = −η1,3 = 1. The matrix of neutrino Yukawa couplings Y ′
ν is given by:

Y ′
ν ≡ Yν O =

√
M

vu
U

√
Dν I. (44)

In the new basis we have (Y ′ †
ν Y ′

ν)i j = 0 for i = j, and

(
Y ′ †

ν Y ′
ν

)
ii = Mi

v2
u

mi, Γ ′
i = M2

i

8π v2
u

mi, Mi
∼= M, (45)

where Γ ′
i is the N ′

i total decay width.

The expression for the CP violating asymmetry ε�
i in the new basis in which Y ′ †

ν Y ′
ν is diagonal at M X can be obtained from Eqs. (38)–

(40) by replacing Yν and Γi with Y ′
ν and Γ ′

i , respectively. Note, however, that in the new basis we have I�
i j = 0. Thus, the CP violating

asymmetries ε�
i will be zero unless non-diagonal elements of Y ′ †

ν Y ′
ν are radiatively generated at the leptogenesis scale MFLG < (�)M X .

As will be shown later, in the model considered a non-zero baryon asymmetry can be produced only in the regime of 3-flavoured
leptogenesis, i.e. for M < (1 + tan2 β) × 109 GeV � 4.9 × 1012 GeV, where we have used the constraint tan β � 70 (see,5 e.g., [37]). Taking
into account that mi � 5 × 10−2 eV and v = 174 GeV, we get |(Y ′ †

ν Y ′
ν)ii | � 8 × 10−3 � 1.

In the new basis, the running of the heavy Majorana neutrino masses Mi is governed by the following equation [33]:

dMi

dt
= 4

(
Y ′ †

ν Y ′
ν

)
ii Mi, t ≡ 1

16π2
ln

μ

M X
, (46)

where the initial conditions are at the scale μ = M X at which Mi = M , i = 1,2,3, and the masses Mi are evaluated at the scale μ =
MFLG < (�)M X . The latter coincides, up to negligibly small corrections, with M: MFLG ∼= M . The running of the masses Mi from M X to
MFLG ∼= M induces the splitting between the masses of the heavy Majorana neutrinos, necessary for a potentially successful leptogenesis.
The solutions of Eqs. (46) [34,35] lead for |(Y ′ †

ν Y ′
ν)ii | � 1 to the following expression for the mass splitting parameter δN

ji :

δN
ji

∼= −4
[(

Y ′ †
ν Y ′

ν

)
j j − (

Y ′ †
ν Y ′

ν

)
ii

]
t̃ ∼= −4

M

v2
u
(m j − mi)t̃, j = i, t̃ = 1

16π2
ln

(
M X

M

)
. (47)

For M X/M = 2 × 106, 2 × 105 and 2 × 104, we get t̃ = 0.092, 0.077, 0.063. The corresponding values of δN
ji are given in Table 1.

The elements of the matrix of neutrino Yukawa couplings Y ′
ν also evolve with the scale μ when the latter diminishes from M X to

MFLG ∼= M . This change is governed by the RG equations for (Y ′
ν)�i , whose general form was given in [32–35]. In the case considered by us

we have at M X : (Y ′ †
ν Y ′

ν)i j = 0, i = j, and6 |(Y ′ †
ν Y ′

ν)ii | � 8 × 10−3. In this case the RG equations for (Y ′
ν)�i [35] simplify considerably and

read:

d(Y ′
ν)�i

dt
∼=

[
3

∑
q=u,c,t

y2
q − 3

5
g2

1 − 3g2
2 + y2

�

](
Y ′

ν

)
�i, � = e,μ, τ , i = 1,2,3, (48)

5 In the calculation of the baryon asymmetry we will values of tan β ∼ 10, which are much smaller than the quoted maximal value.
6 For a matrix of neutrino Yukawa couplings Yν such that Re[(Y †

ν Yν )i j ] = 0, i = j, the RG equations for Yν have a singularity in the case of degenerate in mass heavy

Majorana neutrinos [32,34,35]. As a consequence, the quantity (Y †
ν Yν )i j , i = j, that enters into the expression for the CP violating asymmetry ε�

i , does not vary continuously
with the scale when the latter changes from M X to MFLG . This fact was not taken into account in the calculation of the asymmetries ε�

i performed in [27]. Since in the basis

in which we work we have (Y ′ †
ν Y ′

ν )i j = 0, i = j, at M X at which M j = M , j = 1,2,3, the indicated problem does not appear when we consider the RG evolution of (Y ′
ν )�i

and of (Y ′ †
ν Y ′

ν )i j .
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where yq , q = u, c, t , and y� , � = e,μ, τ , are the charge 2/3 quark and charged lepton Yukawa couplings, g1,2 are the U (1)Y and SU(2)

gauge couplings of the Standard Model and we have neglected terms ∝ Y ′ †
ν Y ′

ν . The quantities which appear in the square brackets in the
r.h.s. of Eq. (48) evolve with the scale μ as it decreases from M X , but the effects of their evolution are subdominant for the problem under
study and we will neglect them. Thus, we will use their values at the scale M X , which will be assumed to be close, or equal, to MGUT .

We are interested in the quantities (Y ′ †
ν Y ′

ν)i j , i = j, at the scale MFLG ∼= M , which enter into the expression for the CP violating asym-
metry ε�

i . Since these quantities are zero at M X , they can get non-zero values at MFLG due only to the term involving the charged lepton
Yukawa coupling y2

� in the RG equation (48) [34,35]. The solutions of the RG equations (48) in the leading logarithmic approximation lead
to the following result:

(
Y ′ †

ν Y ′
ν

)
i j

∼= −2y2
τ

(
Y ′∗

ν

)
τ i

(
Y ′

ν

)
τ j t̃, i = j, (49)

where yτ = (mτ /vd) ∼= (mτ /v)
√

1 + tan2 β is the τ Yukawa coupling, mτ being the τ mass, and v =
√

v2
u + v2

d = 174 GeV. Neglecting

relatively small effects, the quantities in the r.h.s. of Eq. (49) can be taken at the scale M X . Note that even though at M X the off-diagonal
elements of Y ′ †

ν Y ′
ν are zero, they have non-zero values at the leptogenesis scale MFLG due to the radiative corrections.

Using the result obtained for (Y ′ †
ν Y ′

ν)i j , Eq. (49), and Eqs. (38), (44) and (45), we get for the CP violating asymmetry:

ε�
i = + 1

8π
y2
τ t̃

∑
i = j

δN
ji[(

δN
ji

)2 + ( M jm j

16π v2
u

)2] M jm j

v2
u

Im
[
U∗

τ i Uτ j U
∗
�i U� j

]
. (50)

It follows from the expression (50) for ε�
i we have derived that εe

i + ε
μ
i + ετ

i = 0, i = 1,2,3. This result is a consequence of the fact
that the R matrix in the model considered is CP conserving (see, e.g., [28]). One can easily convince oneself using the explicit expression
for the PMNS matrix (27) that we also have: ετ

i = 0, i = 1,2,3. The same conclusion is reached also if one uses the PMNS matrix in which
the higher order corrections have been included,7 Eq. (32) or (34). Thus, in the SUSY SU(5) × T ′ model of interest the baryon asymmetry
can be generated only in the regime of 3-flavoured leptogenesis [31].

The requirement that the baryon asymmetry is generated in the 3-flavoured thermal leptogenesis regime combined with the upper
limit on tanβ implies: M � 4.9 × 1012 GeV. As is not difficult to show, we have for M � 1013 GeV:

(
δN

ji

)2 �
(

1

16π

M jm j

v2
u

)2

. (51)

For M = 1013 GeV, (δN
ji )

2 is bigger by a factor of 10 than the term in the right-hand side of the above inequality. Neglecting the correction

due to the latter, we get a rather simple expression for the asymmetry ε�
i :

ε�
i

∼= − y2
τ

32π

∑
i = j

m j

m j − mi
Im

[
U∗

τ i Uτ j U
∗
�i U� j

]
, (52)

where we have used Eqs. (47) and (50).
Expression (52) for ε�

i does not depend explicitly on the masses of the heavy Majorana neutrinos and on the RG factor t̃ . Thus, the
CP-asymmetries ε�

i are entirely determined by the τ Yukawa coupling and the low-energy neutrino mixing parameters, i.e., the neutrino
masses, the neutrino mixing angles and CP violating phases in the neutrino mixing matrix. They depend weakly on scales M X and M , e.g.,
via the running of the τ Yukawa coupling. The asymmetries ε�

i depend quadratically on the τ Yukawa coupling and thus on tan2 β . This
dependence is crucial for having a viable thermal leptogenesis in the SU(5) × T ′ model of flavour under consideration.

From Eq. (52), using Eqs. (27) and (7), we obtain:

εe
i

∼= − y2
τ

32π
JCP

∑
j =i

m j

m j − mi
ρ ji, ε

μ
i = −εe

i , i = 1,2,3, (53)

where ρ ji = −ρi j , i = j, and ρ21 = ρ31 = ρ23 = +1. Thus, the CP violating asymmetries ε
e,μ
i , i = 1,2,3, are all proportional to the JCP

factor, which determines the magnitude of CP violation effects in the flavour neutrino oscillations.
The final lepton number asymmetry, which is partially converted into a non-zero baryon number asymmetry by the fast sphaleron

interactions in the thermal bath in the Early Universe, receives a contribution from the out-of-equilibrium decays of the three heavy
Majorana neutrinos (sneutrinos) N ′

i (Ñ ′
i ), which are quasi-degenerate in mass. The amount of matter-antimatter asymmetry predicted by

the model is computed numerically by solving the corresponding system of Boltzmann equations. We report below the relevant set of
Boltzmann equations in supersymmetric leptogenesis [38,39] for the lepton flavour (lepton charge) asymmetries Ŷ��

≡ Y��
+ Y�

�̃
, with

�
�(�̃)

≡ B/3 − L
�(�̃)

8:

7 It is claimed in [27] that ετ
i = 0, which does not correspond to the result ετ

i = 0 we obtain. The latter is not difficult to verify.
8 As was pointed out earlier, the CP asymmetries ετ

i (i = 1,2,3) are equal to zero in the model we are discussing. Nonetheless, a source term for �τ(τ̃ ) is provided by

non-zero Ŷ�e,μ , as is explicit from the flavoured Boltzmann equation (56).
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dY N ′
i

dz
= − z

sH(MFLG)
2
(
γ i

D + γ i
S,�L=1

)( Y N ′
i

Y eq
N ′

i

− 1

)
, (54)

dY Ñ ′
i

dz
= − z

sH(MFLG)
2
(
γ ĩ

D + γ ĩ
S,�L=1

)( Y Ñ ′
i

Y eq

Ñ ′
i

− 1

)
, (55)

dŶ��

dz
= − z

sH(MFLG)

3∑
i=1

[(
ε�

i + ε�̃
i

)(
γ i

D + γ i
S,�L=1

)( Y N ′
i

Y eq
N ′

i

− 1

)
+ (

ε�

ĩ
+ ε�̃

ĩ

)(
γ ĩ

D + γ ĩ
S,�L=1

)( Y Ñ ′
i

Y eq

Ñ ′
i

− 1

)

−
(

γ i,�
D + γ i,�̃

D

2
+ γ i,�

W ,�L=1 + γ i,�̃
W ,�L=1 + γ ĩ,�

D + γ ĩ,�̃
D

2
+ γ ĩ,�

W ,�L=1 + γ ĩ,�̃
W ,�L=1

)∑
�′ A��′ Ŷ��′

Ŷ eq
�

]
. (56)

Here Y N ′
i

(Y eq
N ′

i
) is the N ′

i (N ′
i-equilibrium) abundance, z ≡ MFLG/T , T being the temperature of the thermal bath, s is the entropy density

and H(T ) is the expansion rate of the Universe. The quantity γ i
D (i = 1,2,3) is the thermally averaged total decay rate of the Majorana

neutrino N ′
i into the SM lepton and Higgs doublets. Similarly, γ i

S,�L=1 is the corresponding �L = 1 thermal scattering rate of N ′
i with

SM leptons, quarks and gauge bosons. The flavour-dependent wash-out processes involving N ′
i inverse decays and the relative �L = 1

scatterings are denoted as γ
i,�(�̃)
D and γ

i,�(�̃)
W ,�L=1, respectively. Finally, the matrix elements of A in supersymmetric type I see-saw scenarios

are [39]: Aαβ = 16/2133 for α = β and Aαα = −221/2133 (α = e,μ, τ ).
The entropy density, s, and the expansion rate of the Universe, H(T ), are given by:

s = g∗2π2T 3

45
, H(T ) � 1.66

√
g∗T 2

mPl
, (57)

where g∗ = 228.75 [31] and mPl � 1.22 × 1019 GeV is the Planck mass.
In the case in which the soft SUSY breaking terms are negligible, the thermal rates in (54)–(56) satisfy the conditions [31]: γ i

X =
γ ĩ

X and γ i,�
X = γ i,�̃

X = γ ĩ,�
X = γ ĩ,�̃

X . As a good approximation, supersymmetric leptogenesis proceeds as a manifest generalisation of the
standard leptogenesis scenario of the type I see-saw extension of the SM. Indeed, new effects due to different supersymmetric equilibration
mechanisms between particle and sparticle number densities provide typically only relatively small corrections [39], which can be safely
neglected for the purposes of the present study.

The dominant contribution to the production and damping of the lepton asymmetries is generally provided by decays and inverse
decays of N ′

i [40], whose thermal averaged rates are

γ i
D � M3

π2z
K1(z)Γ ′

i , γ i,�
D = γ i

D
|(Y ′

ν)�i |2
(Y ′

ν
†Y ′

ν)ii
, (58)

where K1(z) is a modified Bessel function of the second kind.
We neglect in (54)–(56), for simplicity, thermal corrections to the CP asymmetries and the decay/scattering rates [40]. We do not

include either the �L = 2 wash-out of the flavour lepton asymmetries in the Boltzmann equations listed above because they are subdom-
inant at the temperatures at which the 3-flavoured leptogenesis takes place.9

The final baryon number density (normalised to the entropy density of the Universe) is:

Y B = 10

31
(Ŷ�e + Ŷ�μ + Ŷ�τ ). (59)

In order to have successful leptogenesis, the CP asymmetries ε�
i (� = e,μ) should be sufficiently large and should have the correct sign.

According to Eq. (53), the sign of εe
i = −ε

μ
i and, consequently, of Y B , is fixed by the value of the rephasing invariant associated to the

Dirac phase δ, JCP . Numerically, from (53), we get for tan2 β � 1:

εe
1 � −2.3 × 10−6 JCP(tanβ)2, εe

2 � 1.3 × 10−6 JCP(tanβ)2, εe
3 � 2.1 × 10−7 JCP(tanβ)2, (60)

where we have used Eq. (1) and y2
τ � 10−4 tan2 β . Taking, more explicitly, tan β = 10, one easily obtains:

εe
1 � − sgn(sin δ)1.4 × 10−6, εe

2 � sgn(sin δ)7.0 × 10−7 εe
3 � sgn(sin δ)1.3 × 10−7, (61)

which, in general, is the right order of magnitude of the CP asymmetry in order to have a successful leptogenesis. Notice that sgn(sin δ)

is equal either to (−1) or to (+1), depending on whether the Dirac phase δ ∼= 5π/4 or δ ∼= π/4, which are the two approximate values δ

can have in the model considered (see Eqs. (29) and (30)).
Taking into account Eq. (60), expression (59) can be recast in the form:

Y B ≈ JCP(tanβ)2εηB Y eq
N ′ (z � 1), (62)

9 As is well known, �L = 2 scatterings mediated by N ′
i (Ñ ′

i ) can be safely neglected if Γ ′
i /H(T ) � 10 × Mi/(1014 GeV) [31].
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Fig. 1. Solution of the Boltzmann equations (54)–(56) for tanβ = 10 and δ = π/4. See the text for details. (For interpretation of the references to colour, the reader is referred
to the web version of this Letter.)

where Y eq
N ′ = 45/(π4 g∗) � 2 × 10−3, ε ≡ 10−6 and ηB > 0 is, by definition, the efficiency factor of the asymmetry. It follows from Eqs. (7)

and (62) that for δ = 226.93◦ � 5π/4, the baryon asymmetry has the wrong sign. Thus, the observed value of the baryon asymmetry can
be obtained in the model considered only for δ � π/4.

The efficiency factor ηB in Eq. (62) can be computed by solving the full system of Boltzmann equations (54)–(56). We note that in the
model considered the parameter ηB does not depend on the leptogenesis scale MFLG ∼ M . This can be easily understood if one considers,
for simplicity, the solution of the Boltzmann equations where only decay and inverse decay processes are included: as we have already
mentioned, this is a good approximation in thermal flavoured leptogenesis. In this case, from Eqs (45), (57) and (58) one has:

zγ i
D

sH(M)
∝ mimPl

v2
u

. (63)

Therefore, the Boltzmann equations do not explicitly depend on the heavy Majorana neutrino mass scale M within the indicated approx-
imation. We verified numerically that the dependence of ηB and Y B on M is relatively weak also if we take into account the scattering
processes. This implies that, in the class of SUSY see-saw models of the type considered in this Letter, the leptogenesis scale MFLG can be
lowered sufficiently in order to avoid the potential gravitino problem.10

In Fig. 1, we report the solution of the full set of Boltzmann equations (54)–(56) for tan β = 10 and δ = π/4. The red, blue, green
and black lines represent |Ŷ�e |, |Ŷ�μ |, |Ŷ�τ | and |Y B |, respectively. The dashed line corresponds to Y eq

N ′
1
, while the other three black

lines are the RH neutrino abundances Y N ′
1,2,3

. The gray horizontal band gives the 3σ interval of experimental values of Y B : Y obs
B =

(8.77 ± 0.21) × 10−11 [42], where we have quoted the 1σ error. In this numerical example, we get the final asymmetries:

Ŷ�e � 4.7 × 10−10, Ŷ�μ � −5.8 × 10−11, Ŷ�τ � 2.6 × 10−11 and Y B � 1.4 × 10−10. (64)

From Eq. (62) and the numerical value of Y B thus computed, we get an efficiency factor ηB � 0.07. Obviously, one can get a value of Y B

closer to the mean best fit value Ȳ obs
B = 8.77 × 10−11 for a somewhat smaller value of tan β .

We would like to conclude with the following remarks. As we have shown, the correct sign of the baryon asymmetry in the SU(5) ×
T ′ × Z12 × Z ′

12 model considered [1,2] can be obtained only in the case of δ ∼= π/4. As has already been discussed in the Introduction,
for this value of the Dirac phase δ we have sin2 θ12 ∼= 0.37, while the current neutrino oscillation data imply at 3σ sin2 θ12 � 0.36 [8],
or sin2 θ12 � 0.374 [18], depending on the details of the analysis. For δ ∼= 5π/4, the value of sin2 θ12 ∼= 0.299 predicted by the model lies
within the 1σ interval of values suggested by the data, but the predicted baryon asymmetry of the Universe has the wrong sign11 (see
Eq. (62)). If sin2 θ12 ∼= 0.37 would be definitely excluded by future data, one would have to modify the SU(5) × T ′ model of flavour we
have considered in the present Letter. One possible “minimal” modification could be to lift the degeneracy in mass of the three heavy
Majorana neutrinos (sneutrinos) at the scale M X , at which the flavour symmetry is spontaneously broken. This could be achieved, e.g.,
by replacing the chiral superfield S in the SU(5) × T ′ × Z12 × Z ′

12 invariant superpotential of [2] with a new chiral supermultiplet χ ,
which is a Standard Model singlet and is charged only under the discrete group Z ′

12, with charge ω2. The model, therefore, has the same
gauge and flavour symmetry groups and the same number of fields as the one discussed in [2]. In this new scenario, the flavour structure
of the superpotential naturally generates a Majorana mass matrix (term) for the heavy RH neutrinos at the scale M X . The latter is still
diagonalised by the tri-bimaximal mixing matrix UTBM , but has non-degenerate eigenvalues. The low energy phenomenology, as well as
the generation of the baryon asymmetry of this class of models is therefore worthwhile investigating, but such an investigation lies outside
the scope of the present work.

10 The Davidson-Ibarra bound [41] does not apply in the radiative leptogenesis scenario discussed by us.
11 Our result for the sign of the baryon asymmetry in the case of δ = 226.93◦ � 5π/4 contradicts the claim made in [27].
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