67 research outputs found
Bypass and hyperbole in soil science:A perspective from the next generation of soil scientists
International audienceWe, the coâauthors of this letter, are an international group of soil scientists at early career stages, from PhD students to postdoctoral researchers, lecturers, and research fellows with permanent positions. Here, we present our collective musings on soil research challenges and opportunities and, in particular, the points raised by Philippe Baveye (Baveye, 2020a, 2020b) and Johan Bouma (Bouma, 2020) on bypass and hyperbole in soil science. Raising awareness about these issues is a first and necessary step. To this end, we would like to thank Philippe Baveye and Johan Bouma for initiating this debate.......
Method development for metabolites analysis in IC-ESI/MS.
National audienc
PREPARATION DE COMPLEXES MOLECULAIRES CRISTALLISES DANS LA SERIE DES DERIVES DE CYCLODEXTRINES METHYLEES ET ETUDE DES MECANISMES DE RECONNAISSANCE CHIRALE PAR CHROMATOGRAPHIE EN PHASE GAZEUSE
ROUEN-BU Sciences (764512102) / SudocSudocFranceF
Aging kinetic study of bitumen based on SAR-AD fractions
International audienc
Improved Experimental Yield of Temperature-Cycle-Induced Deracemization (TCID) with Cooling and Crystal Washing: Application of TCID for the Industrial Scale
Temperature-Cycle-Induced Deracemization (TCID) offers a promising approach to obtain enantiopure solids from racemic mixtures. By combining rapid racemization in solution and temperature swings, homochirality is theoretically achieved. Despite theoretical expectations of doubled yields compared to traditional chiral separation methods, such as in Preferential Crystallization, experimental validation remains lacking. We applied TCID to (1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-one) (Cl-TAK), introducing a post-TCID cooling step to enhance yield and a washing step to augment enantiopurity. This refinement yielded an 89.8% mass yield with 99.1% enantiomeric excess in the crystal phase (c.e.e.) within 24 h on an 8.75 g scale, showcasing improved performance with insignificant process duration extension. Additionally, we explored the stochasticity of deracemization, observing the development from low initial crystal enantiomeric excesses (1â6% c.e.e0) at a 2.5 g scale. Kinetic analysis revealed that a 2% c.e.e0 effectively mitigates chiral flipping risks and induction time in our system. Our study underscores the potential for reduced initial c.e.e. to expedite deracemization and presents a straightforward method to optimize yield and purity, facilitating industrial application
- âŠ