725 research outputs found

    The 2004 UTfit Collaboration Report on the Status of the Unitarity Triangle in the Standard Model

    Full text link
    Using the latest determinations of several theoretical and experimental parameters, we update the Unitarity Triangle analysis in the Standard Model. The basic experimental constraints come from the measurements of |V_ub/V_cb|, Delta M_d, the lower limit on Delta M_s, epsilon_k, and the measurement of the phase of the B_d - anti B_d mixing amplitude through the time-dependent CP asymmetry in B^0 to J/psi K^0 decays. In addition, we consider the direct determination of alpha, gamma, 2 beta + gamma and cos(2 beta) from the measurements of new CP-violating quantities, recently performed at the B factories. We also discuss the opportunities offered by improving the precision of the various physical quantities entering in the determination of the Unitarity Triangle parameters. The results and the plots presented in this paper can also be found at http://www.utfit.org, where they are continuously updated with the newest experimental and theoretical results.Comment: 32 pages, 17 figures. High resolution figures and updates can be found at http://www.utfit.org v2: misprints correcte

    The UTfit Collaboration Report on the Status of the Unitarity Triangle beyond the Standard Model I. Model-independent Analysis and Minimal Flavour Violation

    Full text link
    Starting from a (new physics independent) tree level determination of rhobar and etabar, we perform the Unitarity Triangle analysis in general extensions of the Standard Model with arbitrary new physics contributions to loop-mediated processes. Using a simple parameterization, we determine the allowed ranges of non-standard contributions to |Delta F|=2 processes. Remarkably, the recent measurements from B factories allow us to determine with good precision the shape of the Unitarity Triangle even in the presence of new physics, and to derive stringent constraints on non-standard contributions to |Delta F|=2 processes. Since the present experimental constraints favour models with Minimal Flavour Violation, we present the determination of the Universal Unitarity Triangle that can be defined in this class of extensions of the Standard Model. Finally, we perform a combined fit of the Unitarity Triangle and of new physics contributions in Minimal Flavour Violation, reaching a sensitivity to a new physics scale of about 5 TeV. We also extrapolate all these analyses into a "year 2010" scenario for experimental and theoretical inputs in the flavour sector. All the results presented in this paper are also available at the URL http://www.utfit.org, where they are continuously updated.Comment: 29 pages, 56 figure

    The CKM Matrix and The Unitarity Triangle: Another Look

    Get PDF
    The unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles (α,β,γ)(\alpha,\beta,\gamma) and the sides (Rb,Rt)(R_b,R_t), we find that the pairs (γ,β)(\gamma,\beta) and (γ,Rb)(\gamma,R_b) are most efficient in determining (ϱˉ,ηˉ)(\bar\varrho,\bar\eta) that describe the apex of the unitarity triangle. They are followed by (α,β)(\alpha,\beta), (α,Rb)(\alpha,R_b), (Rt,β)(R_t,\beta), (Rt,Rb)(R_t,R_b) and (Rb,β)(R_b,\beta). As the set \vus, \vcb, RtR_t and β\beta appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the (Rt,β)(R_t,\beta) plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for sin2β\sin 2\beta, sin2α\sin 2\alpha, γ\gamma, RbR_b, RtR_t and ΔMs\Delta M_s within the Standard Model and MFV models. We also update the allowed range for the function FttF_{tt} that parametrizes various MFV-models.Comment: "published version. few typos corrected, results unchanged

    Dynamic acetylation profile during mammalian neurulation

    Get PDF
    Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens

    Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in <i>Euglena gracilis</i> membranes

    Get PDF
    Synthetic hexynyl α-D-mannopyranoside and its α-1,6-linked disaccharide counterpart were fluorescently labelled through CuAAC click chemistry with 3-azido-7-hydroxycoumarin. The resulting triazolyl-coumarin adducts, which were amenable to analysis by TLC, HPLC and mass spectrometry, proved to be acceptor substrates for α-1,6-ManT activities in mycobacterial membranes, as well as α- and β-GalT activities in trypanosomal membranes, benchmarking the potential of the fluorescent acceptor approach against earlier radiochemical assays. Following on to explore the glycobiology of the benign protozoan alga Euglena gracilis, α-1,3- and α-1,2-ManT activities were detected in membrane preparations, along with GlcT, Glc-P-T and GlcNAc-P-T activities. These studies serve to demonstrate the potential of readily accessible fluorescent glycans as substrates for exploring carbohydrate active enzymes

    Fermion Masses and Mixing in Extended Technicolor Models

    Full text link
    We study fermion masses and mixing angles, including the generation of a seesaw mechanism for the neutrinos, in extended technicolor (ETC) theories. We formulate an approach to these problems that relies on assigning right-handed Q=1/3Q=-1/3 quarks and charged leptons to ETC representations that are conjugates of those of the corresponding left-handed fermions. This leads to a natural suppression of these masses relative to the Q=2/3Q=2/3 quarks, as well as the generation of quark mixing angles, both long-standing challenges for ETC theories. Standard-model-singlet neutrinos are assigned to ETC representations that provide a similar suppression of neutrino Dirac masses, as well as the possibility of a realistic seesaw mechanism with no mass scale above the highest ETC scale of roughly 10310^3 TeV. A simple model based on the ETC group SU(5) is constructed and analyzed. This model leads to non-trivial, but not realistic mixing angles in the quark and lepton sectors. It can also produce sufficiently light neutrinos, although not simultaneously with a realistic quark spectrum. We discuss several aspects of the phenomenology of this class of models.Comment: 74 pages, revtex with embedded figure

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0

    Full text link
    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.

    Study of Inclusive J/psi Production in Two-Photon Collisions at LEP II with the DELPHI Detector

    Get PDF
    Inclusive J/psi production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction gamma gamma -> J/psi+X is seen. The number of observed N(J/psi -> mu+mu-) events is 36 +/- 7 for an integrated luminosity of 617 pb^{-1}, yielding a cross-section of sigma(J/psi+X) = 45 +/- 9 (stat) +/- 17 (syst) pb. Based on a study of the event shapes of different types of gamma gamma processes in the PYTHIA program, we conclude that (74 +/- 22)% of the observed J/psi events are due to `resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.Comment: 13 pages, 8 figures, Accepted by Phys. Lett.

    CP asymmetry in BϕKSB \to \phi K_S in a general two-Higgs-doublet model with fourth-generation quarks

    Full text link
    We discuss the time-dependent CP asymmetry of decay BϕKSB \to \phi K_S in an extension of the Standard Model with both two Higgs doublets and additional fourth-generation quarks. We show that although the Standard Model with two-Higgs-doublet and the Standard model with fourth generation quarks alone are not likely to largely change the effective sin2β\sin 2 \beta from the decay of BϕKSB \to \phi K_S , the model with both additional Higgs doublet and fourth-generation quarks can easily account for the possible large negative value of sin2β\sin 2 \beta without conflicting with other experimental constraints. In this model, additional large CP violating effects may arise from the flavor changing Yukawa interactions between neutral Higgs bosons and the heavy fourth generation down type quark, which can modify the QCD penguin contributions. With the constraints obtained from bssˉsb \to s \bar{s} s processes such as BXsγB \to X_s \gamma and ΔmBs0\Delta m_{B_s^0}, this model can lead to the effective sin2β\sin 2 \beta to be as large as 0.4- 0.4 in the CP asymmetry of BϕKSB \to \phi K_S.Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
    corecore