1,267 research outputs found

    The appearance, motion, and disappearance of three-dimensional magnetic null points

    Get PDF
    N.A.M. acknowledges support from NASA grants NNX11AB61G, NNX12AB25G, and NNX15AF43G; NASA contract NNM07AB07C; and NSF SHINE grants AGS-1156076 and AGS-1358342 to SAO. C.E.P. acknowledges support from the St Andrews 2013 STFC Consolidated grant.While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.Publisher PDFPeer reviewe

    Management Strategies Of Non-Profit Community Sport Facilities In An Era Of Austerity

    Get PDF
    Research Question: This qualitative research explores the impact of austerity on community sport facilities across England (United Kingdom), drawing upon resource dependence theory (RDT) embedded within network theory. Research Methods: In-depth semi-structured interview data were collected from 24 stakeholders related to community sport facilities (n=12 facility managers, n=6 regional grant managers, n=6 national funders both third sector and corporate). The qualitative data were thematically analysed to understand the impact of austerity on how community sport facilities managed their organisations and operations. Results and Findings: The findings from this research offer insight into the challenges that community sport facilities are encountering which have resulted from austerity, and a shrinking of the funding from central Government to local public services. Furthermore, different community sport facilities have navigated these challenges to maintain sustainability, essentially through adapting network structure and through income dynamism. In addition, using a network theory approach alongside RDT within a sporting context, has allowed us to address issues on how network flow and structure impact sustainability and operations within and between organisations. Implications: The article offers managerial recommendations for community sport facility managers, practitioners and policy makers who operate in times of fiscal constraint. It recommends that future sport research utilises and applies both RDT and network theory to examine these changes and the subsequent management strategies adopted to overcome the associated challenges of fiscal constraint

    Information Storage and Retrieval for Probe Storage using Optical Diffraction Patterns

    Get PDF
    A novel method for fast information retrieval from a probe storage device is considered. It is shown that information can be stored and retrieved using the optical diffraction patterns obtained by the illumination of a large array of cantilevers by a monochromatic light source. In thermo-mechanical probe storage, the information is stored as a sequence of indentations on the polymer medium. To retrieve the information, the array of probes is actuated by applying a bending force to the cantilevers. Probes positioned over indentations experience deflection by the depth of the indentation, probes over the flat media remain un-deflected. Thus the array of actuated probes can be viewed as an irregular optical grating, which creates a data-dependent diffraction pattern when illuminated by laser light. We develop a low complexity modulation scheme, which allows the extraction of information stored in the pattern of indentations on the media from Fourier coefficients of the intensity of the diffraction pattern. We then derive a low-complexity maximum likelihood sequence detection algorithm for retrieving the user information from the Fourier coefficients. The derivation of both the modulation and the detection schemes is based on the Fraunhofer formula for data-dependent diffraction patterns. We show that for as long as the Fresnel number F<0.1, the optimal channel detector derived from Fraunhofer diffraction theory does not suffer any significant performance degradation.Comment: 14 pages, 11 figures. Version 2: minor misprints corrected, experimental section expande

    Naturally propped fractures caused by quartz cementation preserve oil reservoirs in basement rocks

    Get PDF
    MB is in receipt of a postgraduate studentship from PTDF (Nigeria). Skilled technical support was provided by M. Baron and J. Still. Two reviewers made valuable criticisms that improved the paper.Peer reviewedPostprin

    LET spectra measurements of charged particles in the P0006 experiment on LDEF

    Get PDF
    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members

    The onset of Impulsive Bursty reconnection at a two-dimensional current layer

    Get PDF
    The sudden reconnection of a non-force free 2D current layer, embedded in a low-beta plasma, triggered by the onset of an anomalous resistivity, is studied in detail. The resulting behaviour consists of two main phases. Firstly, a transient reconnection phase, in which the current in the layer is rapidly dispersed and some flux is reconnected. This dispersal of current launches a family of small amplitude magnetic and plasma perturbations, which propagate away from the null at the local fast and slow magnetosonic speeds. The vast majority of the magnetic energy released in this phase goes into internal energy of the plasma, and only a tiny amount is converted into kinetic energy. In the wake of the outwards propagating pulses, an imbalance of Lorentz and pressure forces creates a stagnation flow which drives a regime of impulsive bursty reconnection, in which fast reconnection is turned on and off in a turbulent manner as the current density exceeds and falls below a critical value. During this phase, the null current density is continuously built up above a certain critical level, then dissipated very rapidly, and built up again, in a stochastic manner. Interestingly, the magnetic energy converted during this quasi-steady phase is greater than that converted during the initial transient reconnection phase. Again essentially all the energy converted during this phase goes directly to internal energy. These results are of potential importance for solar flares and coronal heating, and set a conceptually important reference for future 3D studies

    Marine Reserve Design: Optimal Size, Habitats, Species Affinities, Diversity, And Ocean Microclimate

    Get PDF
    The design of marine reserves is complex and fraught with uncertainty. However, protection of critical habitat is of paramount importance for reserve design. We present a case study as an example of a reserve design based on fine-scale habitats, the affinities of exploited species to these habitats, adult mobility, and the physical forcing affecting the dynamics of the habitats. These factors and their interaction are integrated in an algorithm that determines the optimal size and location of a marine reserve for a set of 20 exploited species within five different habitats inside a large kelp forest in southern California. The result is a reserve that encompasses similar to 42% of the kelp forest. Our approach differs fundamentally from many other marine reserve siting methods in which goals of area, diversity, or biomass are targeted a priori. Rather, our method was developed to determine how large a reserve must be within a specific area to protect a self-sustaining assemblage of exploited species. The algorithm is applicable across different ecosystems, spatial scales, and for any number of species. The result is a reserve in which habitat value is optimized for a predetermined set of exploited species against the area left open to exploitation. The importance of fine-scale habitat definitions for the exploited species off La Jolla is exemplified by the spatial pattern of habitats and the stability of these habitats within the kelp forest, both of which appear to be determined by ocean microclimate

    Coral Disease and Health Workshop: Coral Histopathology II

    Get PDF
    The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis. One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages
    corecore