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While theoretical models and simulations of magnetic reconnection often assume symmetry such

that the magnetic null point when present is co-located with a flow stagnation point, the introduc-

tion of asymmetry typically leads to non-ideal flows across the null point. To understand this

behavior, we present exact expressions for the motion of three-dimensional linear null points.

The most general expression shows that linear null points move in the direction along which the

magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohy-

drodynamics results from advection by the bulk plasma flow and resistive diffusion of the mag-

netic field, which allows non-ideal flows across topological boundaries. Null point motion is

described intrinsically by parameters evaluated locally; however, global dynamics help set the

local conditions at the null point. During a bifurcation of a degenerate null point into a null-null

pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair

will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but

with finite components in the directions orthogonal to the null space. Not all bifurcating null-null

pairs are connected by a separator. Furthermore, except under special circumstances, there will

not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators

cannot be described using solely local parameters because the identification of a particular field

line as a separator may change as a result of non-ideal behavior elsewhere along the field line.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4934929]

I. INTRODUCTION

Magnetic reconnection1–4 frequently occurs at and

around magnetic null points: locations where the magnetic

field strength equals zero.5–9 Magnetospheric null points

have been identified using multipoint in situ measurements

as the nulls pass through the spacecraft constellation.10–16

Null points in the solar atmosphere have been identified

through extrapolation of the photospheric magnetic field and

morphology in coronal emission.17–27 Numerical simulations

of magnetic reconnection and plasma turbulence at low

guide fields frequently show the formation and evolution of

null points,28,29 as do numerical experiments of typical solar

events such as flux emergence.30,31

Two-dimensional, non-degenerate magnetic null points

are classified as X- or O-type depending on the local mag-

netic field structure. If we define M as the Jacobian matrix of

the magnetic field at the null point, then a null point will be

X-type if detM < 0, O-type if detM > 0, and degenerate if

detM ¼ 0. Magnetic reconnection in two dimensions can

only occur at null points (e.g., Refs. 32 and 33).

In three dimensions, the structure of non-degenerate

magnetic null points is significantly more complex.5–9 Null

lines and null planes are structurally unstable and unlikely to

exist in real systems (e.g., Refs. 7 and 34). The magnetic

field structure around a linear three-dimensional null point

includes separatrix surfaces (or fans) of infinitely many field

lines that originate (or terminate) at the null, and two spine

field lines that end (or begin) at the null. A negative (or type

A) null point has separatrix surface field lines heading

inward toward the null point with spine field lines heading

outward from the null point. In contrast, a positive (or type

B) null point has separatrix surface field lines heading out-

ward away from the null point and spine field lines heading

inward toward the null point.

Separators (also known as X-lines by some in the mag-

netospheric community) are magnetic field lines that connect

two nulls. Separators that include a spine field line are not

structurally stable, so separators in real systems will almost

always be given by the intersection of two separatrix surfa-

ces. Null points, separatrix surfaces, spines, and separators

are the topological boundaries that divide the magnetic field

into distinct domains and are therefore preferred locations

for magnetic reconnection.31,35–37 Three-dimensional mag-

netic reconnection can also occur without nulls,33,38–42 espe-

cially in regions such as quasi-separatrix layers where the

magnetic connectivity changes quickly.

Motion of magnetic null points and reconnection regions

occurs during any realistic occurrence of magnetic reconnec-

tion. In Earth’s magnetosphere, X-line retreat has been

observed in the magnetotail43–46 and poleward of the cusp.47

At the dayside magnetopause48,49 and in tokamaks,50,51 the

combination of a plasma-pressure gradient and a guide field

leads to diamagnetic drifting of the reconnection site that cana)namurphy@cfa.harvard.edu
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suppress reconnection. Laboratory experiments frequently

show reconnection site motion and asymmetry, often due to

geometry or the Hall effect.52–55 During solar flares, the

reconnection site often rises with time as the flare loops grow

and can also show transverse motions (e.g., Refs. 56 and 57).

Theoretical models of magnetic reconnection often

assume symmetry such that each magnetic null coincides

with a flow stagnation point in the reference frame of the

system. When asymmetry is introduced, there is in general

a separation between these two points,54,58–64 and in some

cases a stagnation point might not even exist near a null

point.65 In all of these situations, there will generally be

plasma flow across the magnetic null and the null will

change position. Interestingly, the velocity of a null point

will generally not equal the plasma flow velocity at the null

point.62–65 This effect is similar to the flow-through mode

of reconnection.66,67 During asymmetric magnetic recon-

nection in partially ionized plasmas, there may exist neutral

flow through the current sheet from the weak magnetic field

(high neutral pressure) side to the strong magnetic field

(low neutral pressure) side due to the neutral pressure

gradient.64

In previous work,62 we derived an exact expression for

the motion of an X-line when its location is constrained to

one dimension by symmetry. In resistive magnetohydrody-

namics (MHD), X-line motion results from a combination

of advection by the bulk plasma flow and resistive diffusion

of the normal component of the magnetic field. In this

work, we present exact expressions for the motion of linear

null points in three dimensions and discuss the typical prop-

erties of the bifurcations of degenerate magnetic null points.

Section II contains a derivation of the motion of linear null

points in a vector field. Section III uses the results from

Section II to describe the motion of magnetic null points.

Section IV considers the local bifurcation properties of

magnetic null points and provides three examples. Section

V contains a summary of this work and discussion on the

implications.

II. MOTION OF LINEAR NULL POINTS IN AN
ARBITRARY VECTOR FIELD

We define xnðtÞ as the time-dependent position of an iso-

lated null point in a vector field Bðx; tÞ. We define

BnðxnðtÞ; tÞ as the value of the vector field at the null; while

Bn � 0 for all time, @B
@t jxnðtÞ �

@Bn

@t 6¼ 0 when the null point is

moving. We define U to be the velocity of this null

U � dxn

dt
: (1)

The local structure of a non-degenerate null point can be

found by taking a Taylor expansion and keeping the linear

terms.5–9 The linear structure is then given by

B ¼ M � dx; (2)

where dx � x� xn. The elements of the Jacobian matrix M
evaluated at the null are given by

Mij ¼ @jBi; (3)

where i is the row index and j is the column index. The trace

of M equals zero when r � B ¼ 0, and M ¼ ðrBÞT .

Next we take the derivative following the motion of the

null

@Bn

@t
þ U � rBjxn

¼ 0: (4)

This expression gives the total derivative of the magnetic field

at the null point using the null’s velocity in an arbitrary refer-

ence frame. This derivative equals zero because the magnetic

field at the null by definition does not deviate from zero as we

are following it. By solving for U in Eq. (4), we arrive at the

most general expression for the velocity of the null point68–70

U ¼ �M�1 @Bn

@t
; (5)

which is valid for vector fields of arbitrary dimension. This

derivation provides an exact result as long as M is non-

singular.

An alternate derivation for Eq. (5) starts from the first

order Taylor series expansion of B with respect to time and

space about a linear null point

B dx; dtð Þ ¼ M � dxþ @Bn

@t
dtþO kdxk2; dt2

� �
: (6)

This first order expansion is valid in the limit of small dt and

jdxj. We define dxn as the position of the null point at dt.
Setting Bðdxn; dtÞ ¼ 0 provides a unique solution for

U � dxn=dt, and we again arrive at Eq. (5). Unlike the previ-

ous paragraph, this derivation uses the linearization approxi-

mation. Eq. (5) is related to the implicit function theorem.

Equation (5) shows that a null point will move along

the path for which B and @Bn

@t are oppositely directed. The

null point will move faster if the vector field is changing

quickly in time or varying slowly in space along this path.

This exact result for U can be applied to find the velocity of

linear null points in any time-varying vector field with con-

tinuous first derivatives in time and space about the null

point. A unique velocity U exists as long as M is non-

singular. If M is non-singular, then there exists exactly one

radial path away from the null for which the vector field is

pointed in a particular direction.

III. MOTION OF MAGNETIC NULL POINTS

We next consider the case where B is a magnetic field

rather than just any vector field. The derivation of Eq. (5)

does not invoke any of Maxwell’s equations. We now intro-

duce Faraday’s law

@B

@t
¼ �r� E; (7)

where E is the electric field. By combining Eqs. (5) and (7),

we arrive at the relation

U ¼ M�1 ðr � EÞ; (8)

which additionally requires continuous first derivatives of

the electric field in space about the null point. This
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expression does not depend on any particular Ohm’s law,

and indeed can be applied in situations where there is no

Ohm’s law.

Next we consider the resistive MHD Ohm’s law

Eþ V� B ¼ gJ; (9)

where V is the plasma flow velocity and J is the current den-

sity. The resistivity g is assumed to be uniform for simplic-

ity. Eq. (8) then becomes

U ¼ V� gM�1r2B; (10)

where all quantities on the right hand side are evaluated at

the magnetic null. This expression requires that B has contin-

uous first derivatives in time and continuous second deriva-

tives in space about the null point. Null point motion in

resistive MHD results from a combination of advection by

the bulk plasma flow and resistive diffusion of the magnetic

field. Even in the absence of flow, null points may still move

in resistive situations. The plasma flow velocity at the null

point does not equal the velocity of the null point.62 A sche-

matic showing null point motion due to resistive diffusion is

presented in Fig. 1.

Equation (8) can also be evaluated using a generalized

Ohm’s law containing additional terms.2 For example, we

can use an Ohm’s law of the form

Eþ Vi � B ¼ gJþ J� B

ene
�rpe

ene
; (11)

where Vi is the bulk ion velocity, ne is the electron density, e
is the elementary charge, and pe is a scalar electron pressure.

For J ¼ eneðVi � VeÞ, Eq. (8) becomes

U ¼ Ve � gM�1r2BþM�1 rne �rpe

n2
ee

� �
; (12)

where quantities are again evaluated at the null point. The

first term on the right hand side corresponds to the magnetic

field being carried with the electron flow velocity, Ve, rather

than the bulk plasma flow; the second term corresponds to

the resistive diffusion of the magnetic field at the null; and

the third term corresponds to the Biermann battery.71,72

IV. THE APPEARANCE AND DISAPPEARANCE OF
MAGNETIC NULL POINTS

We next consider the emergence and disappearance of

magnetic null points, with an emphasis on the instantaneous

velocity of separation or convergence of a bifurcating null-

null pair. The local approach taken here complements global

bifurcation studies.73 Thus far we have just considered non-

degenerate null points for which the local magnetic field can

be described by Eq. (2) using only the linear terms in the

Taylor series expansion. As long as M is non-singular at the

null, then there exists a unique velocity corresponding to the

motion of that null point. Non-degenerate null points are

therefore structurally stable and cannot disappear unless M
becomes singular.68

In contrast, degenerate null points are structurally unsta-

ble and generally exist instantaneously as a transition

between different topological states.7,34 Null points must

appear or disappear in oppositely signed pairs during a bifur-

cation because the overall topological degree of the region

cannot change unless a null point enters or leaves the domain

across a boundary.74 In most situations of physical interest,

degenerate three-dimensional magnetic null points will have

rankM ¼ 2 and nullityM ¼ 1 (e.g., Ref. 7). The null space

(or kernel) of M will then be one-dimensional and corre-

sponds to the eigenvector of M with eigenvalue zero. The

three eigenvalues must sum to zero because of the diver-

gence constraint,6 which implies that the two non-zero eigen-

values must either be both real and of opposite sign, or both

complex and of opposite sign.9

Although the linear representation in Eq. (2) can

describe the magnetic structure surrounding a degenerate

null point (e.g., Ref. 9) the region around a bifurcating null-

null pair requires higher-order terms. Third-order terms need

to be considered only when the first- and second-order deriv-

atives both vanish at the null, so usually a second-order

expansion will suffice. The Taylor series expansion of the

magnetic field about a three-dimensional null point to

second-order in time and space is

B dx; dtð Þ ¼ M � dxþ @Bn

@t
dtþ 1

2

dxT Hx dx

dxT Hy dx

dxT Hz dx

2
64

3
75

þ dt

2

dx � rð Þ@tBx

dx � rð Þ@tBy

dx � rð Þ@tBz

2
64

3
75þ dt2

2

@2Bn

@t2
þO kdxk3; dt3

� �
;

(13)

where the Jacobian matrix, Hessian matrices, and derivatives

are evaluated at the null point. The elements of the Hessian

matrices are given by Hk;ij ¼ @i@jBk for i; j; k 2 fx; y; zg. If

the magnetic field is locally continuous, then the partial de-

rivative operators will be commutative and the Hessian mat-

rices will be symmetric. When _B is constant in time and

space, then the fourth and fifth terms on the right hand side

FIG. 1. A two-dimensional example showing the motion of an X-type null

point to the right (in the positive x direction) due to resistive diffusion of the

vertical component of the magnetic field (Bz) along the vertical (z) direction.

Above and below the null, Bz < 0. The negative Bz diffuses along the z
direction into the immediate vicinity of the null point. At a slightly later

time, the magnetic field at the current position of the null point will have

Bz < 0. The negative Bz diffusion cancels out positive Bz to the right of the

null point, so the resulting null point motion is to the right. Reproduced with

permission from Phys. Plasmas 17, 112310 (2010). Copyright 2010

American Institute of Physics.
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of Eq. (13) vanish. The positions of the null points for a

given dt may be found by setting Bðdxn; dtÞ ¼ 0 in Eq. (13)

(or the full expression of the magnetic field) and then solving

for dxn.

The instantaneous velocity of convergence or separation

of a bifurcating null-null pair may be infinite, finite, or zero

(see Section IV A for examples). Suppose that there exists a

degenerate three-dimensional null point with rankM ¼ 2 and

that M has three unique eigenvectors. The first-order direc-

tional derivatives of each component of B are zero along the

one-dimensional null space of M. Under most realistic cir-

cumstances, the second-order directional derivative of B

along the null space of M will be nonzero. Except in special

circumstances, the component of velocity along the null

space of M of the bifurcating null-null pair will be instanta-

neously infinite. Next, consider the two-dimensional sub-

space that is orthogonal to the null space of M. The Jacobian

of M in this subspace at the null point will be invertible.

Consequently, there exists a unique finite velocity within this

subspace for the two-dimensional null point. Thus, in gen-

eral, the instantaneous component of velocity along the null

space of a bifurcating null-null pair will be infinite while the

components of velocity orthogonal to the null space will be

finite or zero.

Next we consider separators that may exist and connect

a bifurcating null-null pair. Because these bifurcations can-

not change the topological degree of the system, the null-

null pair will include one negative null and one positive

null.7,74 Define R� and Rþ as the separatrix surfaces and c�
and cþ as the spine field lines of the negative and positive

null points, respectively. The field lines in R� and cþ
approach the null, while the field lines in Rþ and c� recede

from the null. In the neighborhood of a linear null, the sepa-

ratrix surface is given by the plane spanned by the two eigen-

vectors associated with eigenvalues that have the same sign

for their real part, and the two spine field lines are along the

remaining eigenvector.9

Separators that exist in real systems will almost always

be given by the intersection of two separatrix surfaces.7,36

Spine-spine separators may exist if c� and cþ include the

same field line. Though spine-spine separators may occur in

some symmetric systems, they are not structurally stable and

thus can generally be ignored.36 As explained above, during

the bifurcation of a degenerate null point a positive and neg-

ative null are formed; hence, spine-fan separators can never

connect a bifurcating null-null pair because such separators

connect either two positive or two negative nulls.

Additionally, not all bifurcating null-null pairs will be con-

nected by a separator.

In most realistic situations, there will not exist a straight

line separator connecting a bifurcating null-null pair as one

might intuitively expect (see also Refs. 7 and 8). Typically,

there will exist some angle between the separatrix surfaces

of each of the two null points in the time surrounding the

bifurcation. Equivalently, each pair of eigenvectors associ-

ated with the separatrix surface of each null will usually be

changing in time, and, in general, this evolution will be dif-

ferent for each separatrix surface.

A straight line separator may only be created under spe-

cial circumstances, such as when certain symmetries are

present. For example, a straight line separator will occur if

the two nulls from the bifurcating null-null pair are both

improper nulls (not spiral) and they both share the same fan

eigenvector which is parallel to the direction of motion of

the bifurcating nulls.

A. Bifurcation examples

Let us consider a prototypical null point bifurcation of

the form

Bðx; tÞ ¼
ða� zÞxþ by
cx� ðaþ zÞy

z2

2
4

3
5þ dBðx; tÞ; (14)

where a, b, and c are arbitrary real constants with

a2 þ bc 6¼ 0. We assume that dBðx; 0Þ ¼ 0 so that there

exists a degenerate null point at the origin with rankM ¼ 2

at t¼ 0. The null space of M at the degenerate null point is

given by ẑ, which is the eigenvector of M corresponding to

eigenvalue zero. The remaining eigenvectors of the degener-

ate null point are in the x-y plane and given by

e1 �
�b

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

0

2
4

3
5and e2 �

�b
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

0

2
4

3
5; (15)

which correspond to eigenvalues �ða2 þ bcÞ and a2 þ bc,

respectively. We only consider time and space close to the

bifurcation such that jdBzj < ja2 þ bcj. These examples will

elucidate many of the properties of null point bifurcations

discussed earlier in this section.

1. First bifurcation example

Suppose that dBðtÞ ¼ �ẑsgnðtÞjtja in Eq. (14). We

assume that a > 0 so that the expression for dBðtÞ does not

diverge near t¼ 0. For t> 0, the third component of B

reduces to z2 � ta and two null points exist, but when t< 0,

there are no null points. At t¼ 0, a single second-order null

point appears at the origin as the system undergoes a saddle-

node bifurcation. For t> 0, the two null points are at

xn ¼ ½0; 0;6ta=2�>. The null point with zn > 0 will be a posi-

tive null if a2 þ bc > 0 and a negative null otherwise. The

null points have velocities of _xn ¼ ½0; 0;6 a
2

ta=2�1�>. When

0 < a < 2, the velocity of separation diverges to infinity at

t¼ 0. For the critical case when a¼ 2, the null point veloc-

ities are constant: _xn ¼ ½0; 0;61�>. When a > 2, the null

point velocities asymptotically approach zero at t¼ 0. Since

the null point velocities are purely in the ẑ direction and this

is also the direction of an eigenvector of the fan planes of

each of the nulls, the resulting separator is a straight line

along x ¼ y ¼ 0 for which Bz < 0.

Finely tuned examples such as this one are unlikely to

occur in nature, but show that instantaneous velocities that

are infinite, finite, or zero are mathematically allowable dur-

ing the bifurcation of a degenerate null point.

2. Second bifurcation example

Suppose that dBðtÞ ¼ _Bt in Eq. (14), where _Bx; _By, and
_Bz are real constants with _Bz < 0. By setting Bðxn; tÞ ¼ 0,
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we arrive at this expression for the null point positions for

t � 0,

xn tð Þ ¼

�a _Bxt� b _Byt7 _Bx

ffiffiffiffiffiffiffiffiffi
� _Bz

p
t3=2

a2 þ bcþ _Bzt

�c _Bxtþ a _Byt7 _By

ffiffiffiffiffiffiffiffiffi
� _Bz

p
t3=2

a2 þ bcþ _Bzt

6
ffiffiffiffiffiffiffiffiffiffi
� _Bzt

p

2
666666664

3
777777775
: (16)

The instantaneous velocities of the bifurcating null points at

t¼ 0 are given by

lim
t!0þ

_xn tð Þ ¼

�a _Bx � b _By

a2 þ bc

�c _Bx þ a _By

a2 þ bc

61

2
6666664

3
7777775
: (17)

The velocity in the x-y plane will be finite except under the

special circumstance when _Bx ¼ _By ¼ 0 in which case the

velocity in the x-y plane will be zero. The instantaneous

component of velocity along the null space of M is infinite.

The eigenvectors, eigenvalues, and direction normal to

the fan for the null points resulting from the bifurcation are

shown in Table I. The eigenvectors associated with each null

are not functions of time for this example, but the eigenval-

ues are. The structure of the resulting null-null pair depends

on the value of a2 þ bc.

When a2 þ bc > z2
n > 0 (case 1), all eigenvalues are

real so the bifurcation results in a positive improper null

point with zn > 0 and a negative improper null point with

zn < 0. The separatrix surfaces cannot be parallel in such a

case, so a separator exists between the two nulls as the

curved intersection of the two separatrix surfaces (see Figure

2 for a typical example).

When a2 þ bc < 0 (case 2), each null has two complex

conjugate eigenvalues so the bifurcation results in a positive

spiral null point with zn < 0 and a negative spiral null point

with zn > 0. The field lines in the separatrix surfaces of both

nulls are parallel to the x-y plane, so the separatrix surfaces

do not intersect to yield a separator. A spine-spine separator

can exist under special conditions (e.g., when _Bx ¼ _By ¼ 0),

but under generic conditions no separator will exist to con-

nect these two newly formed null points. Figure 3 shows an

example where the spine field lines of each null twist around

each other before approaching the fan of the other null and

spiraling away.

A separator will exist as a straight line between the two

bifurcating null points if and only if _Bx ¼ _By ¼ 0 for both

case 1 and case 2.

3. Third bifurcation example

In contrast to the first two examples, we now consider

a magnetic field perturbation that is a function of both

time and space. From Eq. (14), we define dBðx; tÞ ¼
½ _Bxt; _Byt; 3yt� 2t�> where _Bx and _By are real constants. For

TABLE I. The eigenvectors, eigenvalues, and direction normal to the fan for the null points in the second bifurcation example.

Case 1: a2 þ bc > z2
n > 0 Case 2: a2 þ bc < 0

Pos. null (zn > 0) Neg. null (zn < 0) Pos. null (zn < 0) Neg. null (zn > 0)

Fan eigenvector, eigenvalue ẑ; 2jznj ẑ;�2jznj e1; jznj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

e1;�jznj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

Fan eigenvector, eigenvalue e2;�jznj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

e1; jznj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

e2; jznj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

e2;�jznj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

Spine eigenvector, eigenvalue e1;�jznj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

e2; jznj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

ẑ;�2jznj ẑ; 2jznj
Direction normal to fan ½�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

;�b; 0�> ½�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bc
p

;�b; 0�> ẑ ẑ

FIG. 2. Two improper null points (red and blue spheres) resulting from the

bifurcation of a degenerate null point with a2 þ bc > z2
n > 0 (case 1 in

Section IV A 2). The fan surfaces of the two nulls (denoted by salmon field

lines for the positive null at zn > 0 and light blue field lines for the negative

null at zn < 0) intersect to yield a curved separator field line (green). The

spine field lines are orange (purple) for the positive (negative) null. In this

example, ða; b; cÞ ¼ ð2;�1; 3Þ; _B ¼ ½1;�1;�1�>, and t¼ 0.2.

FIG. 3. Two spiral null points (red and blue spheres) resulting from the bifur-

cation of a degenerate null point with a2 þ bc < 0 (case 2 in Section IV A 2).

The spine field lines [thick red (dark blue) lines for the positive (negative)

nulls] wrap around each other instead of intersecting. The fan surfaces [salmon

(light blue) lines for the positive (negative) nulls] are parallel to each other

and the x-y plane, and do not intersect. Hence, no separator connects this bifur-

cating null-null pair. In this example, ða; b; cÞ ¼ ð1; 1;�2Þ; _B ¼ ½1; 1;�2�>,

and t¼ 0.1.
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the particular case shown in Figure 4, ða; b; cÞ ¼ ð1; 1;�2Þ.
A separator is created connecting the bifurcating null-null

pair because both the eigenvalues and eigenvectors of the

nulls evolve in time. The separators formed in the case

between two bifurcating spiral nulls are typically long and

highly spiraled. Solving for B ¼ 0 using the above values

in Eq. (14) gives the following as the null point locations as

a function of t:

xn tð Þ ¼
� 1

2
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t� 3tyn

p� �
yn

yn

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t� 3tyn

p

2
664

3
775; (18)

where yn ¼ ½ð1þ 2tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28t2 þ 4tþ 1
p

�=6t. In the limit of

t! 0, we must consider the quadratic equation satisfied by

yn,

3ty2
n � ð1þ 2tÞyn � 2t ¼ 0; (19)

which implies yn¼ 0 (and, hence, xn ¼ zn ¼ 0) as t! 0.

Differentiating this quadratic with respect to t and then tak-

ing the limit t! 0 reveals that _yn ¼ �2. It can then be

shown that in the limit t! 0, the instantaneous velocities of

the bifurcating null points are _xn ¼ ½1;�2;61�>.

V. DISCUSSION

In this paper, we derive an exact expression for the

motion of linear null points in a vector field and apply this

expression to magnetic null points. Resistive diffusion and

other effects in the generalized Ohm’s law allow for non-

ideal flows across magnetic null points. In resistive MHD,

null point motion results from a combination of advection by

the bulk plasma flow and resistive diffusion of the magnetic

field. These results are particularly relevant to studies of null

point magnetic reconnection, especially when asymmetries

are present. Analytical models of asymmetric reconnection

must necessarily satisfy these expressions. Non-ideal flows

at null points allow the transfer of plasma across topological

boundaries.

Just as we must be careful when describing the motion

of magnetic field lines,75–77 we must also be careful when

describing the motion of magnetic null points. Null points

are not objects. A null point is not permanently affixed to a

parcel of plasma except in ideal or certain perfectly symmet-

ric cases. Null points cannot be pushed directly by plasma

pressure gradients or other forces on the plasma, but there

will generally be indirect coupling between the momentum

equation and Faraday’s law that contributes to null point

motion. The motion of a null point is determined intrinsically

by local quantities evaluated at the null point. However,

global dynamics help set the local conditions that determine

null point motion.

In addition to providing insight into the physics of non-

ideal flows at magnetic null points and constraining models

of asymmetric reconnection, the expressions for null point

motion have several practical applications. Locating nulls of

vector fields in three dimensions is non-trivial,78,79 but if the

null point positions are found for one time, then these

expressions provide a method for estimating the positions of

null points at future times. When there exists a cluster of sev-

eral null points, these expressions provide a method for iden-

tifying which null points correspond to each other at

different times. A practical limitation is that these expres-

sions will often require evaluating derivatives of noisy or nu-

merical data (cf. Refs. 80 and 81). However, these

expressions provide a test of numerical convergence and can

be used to estimate the effective numerical resistivity in

simulations of null point reconnection (compare to Refs. 82

and 83).

Linear magnetic null points appear and disappear in

pairs associated with the bifurcation of a degenerate mag-

netic null point. The null space of M in these degenerate

nulls will typically be one-dimensional. Second or higher

order terms in the Taylor series expansion are necessary to

describe the structure of a degenerate null point and the

region between a bifurcating null-null pair. Except in special

circumstances, the instantaneous velocity of convergence or

separation of a null-null pair will typically be infinite along

the null space of M but with finite components of velocity in

the orthogonal directions. This means that null-null pairs that

have just appeared or are just about to disappear will not lie

next to one another, but will always have a finite separation

no matter how small a time step between frames is taken and

regardless of whether the field is known numerically on a

grid or analytically everywhere within a domain.

Just before or after a bifurcation, a straight line separator

connecting the null-null pair will generally not exist.

Furthermore, a separator, curved or straight, generic or non-

generic, will not necessarily connect a null-null pair just

before or after bifurcation if the nulls involved are of spiral

type and their separatrix surfaces are parallel. The structures

of second-order nulls and separators that exist very near a

bifurcation remain important problems for future work.

In resistive MHD, null points must resistively diffuse in

and out of existence. In the reference frame of the moving

plasma, a necessary condition for a degenerate null point to

form is that the resistive term in the induction equation,

gr2B, be antiparallel to the magnetic field at the location of

the impending degenerate null. This places physics-based

FIG. 4. As Figure 3, but here the time derivative of the z-component of the

magnetic field, _Bz , is linear in y. The addition of a second-order term in

space and time means that the fan surfaces [salmon (light blue) lines for the

positive (negative) nulls] tilt towards each other the instant after bifurcation

creating a separator which connects this bifurcating null-null pair. In this

example, ða; b; cÞ ¼ ð1; 1;�2Þ, t¼ 0.1, and dBðx; tÞ ¼ ½t; 0; 3yt� 2t�>.
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geometric constraints on when and where bifurcations are

allowed to happen.

We may consider whether or not a similar local analysis

can be performed to describe the motion of separators.

Consider a separator that connects two magnetic null points.

Suppose that a segment of this separator exhibits non-ideal

evolution. Along the remainder of its length, the magnetic

field in the vicinity of the separator evolves ideally. At a

slightly later time, the field line that was the separator will,

in general, not continue to be the separator between these

two null points despite the locally ideal evolution. The

motion of separators therefore cannot be described using

solely local parameters. However, it may be possible to

derive an expression for the motion of a separator by taking

into account plasma flow and connectivity changes along its

entire length. Such an approach would provide insight into

the structural stability of separators and separator bifurca-

tions,84 as well as the nature of plasma flows across topologi-

cal boundaries. This latter aspect is fundamental to the basic

physics of three-dimensional reconnection; indeed, an early

definition85 states that reconnection is “the process whereby

plasma flows across a surface that separates regions contain-

ing topologically different magnetic field lines” (see also

Ref. 39). We are investigating the problem of separator

motion in two and three dimensions in ongoing work.

There exist numerous additional opportunities for future

work. Our results take a local approach; consequently, nu-

merical simulations are needed to investigate the interplay

between local and global scales during null point motion

and bifurcations. Numerical simulations can be used to

investigate how null points diffuse in and out of existence in

non-ideal plasmas and how separators behave during bifurca-

tions. If the flow field and magnetic field are well diagnosed

in space or laboratory plasmas, the expressions for null point

motion may be used to provide constraints on magnetic field

dissipation. Equation (10) offers another opportunity to mea-

sure the plasma resistivity in the collisional limit. Dedicated

laboratory experiments offer an opportunity to investigate

plasma flow across null points (and other topological boun-

daries) as well as null point and separator bifurcations.

Finally, many results exist in the literature outside of plasma

physics on bifurcations of vector fields and topology-based

visualization of vector fields. While communication across

disciplines is hindered by differences in terminology,86 the

application of this external knowledge to plasma physics will

likely lead to improved physics-based understanding of these

processes.
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