117 research outputs found
RR Lyrae Stars In The GCVS Observed By The Qatar Exoplanet Survey
We used the light curve archive of the Qatar Exoplanet Survey (QES) to
investigate the RR Lyrae variable stars listed in the General Catalogue of
Variable Stars (GCVS). Of 588 variables studied, we reclassify 14 as eclipsing
binaries, one as an RS Canum Venaticorum-type variable, one as an irregular
variable, four as classical Cepheids, and one as a type II Cepheid, while also
improving their periods. We also report new RR Lyrae sub-type classifications
for 65 variables and improve on the GCVS period estimates for 135 RR Lyrae
variables. There are seven double-mode RR Lyrae stars in the sample for which
we measured their fundamental and first overtone periods. Finally, we detect
the Blazhko effect in 38 of the RR Lyrae stars for the first time and we
successfully measured the Blazhko period for 26 of them.Comment: Accepted IBV
An Improved Method for Estimating the Masses of Stars with Transiting Planets
To determine the physical parameters of a transiting planet and its host star
from photometric and spectroscopic analysis, it is essential to independently
measure the stellar mass. This is often achieved by the use of evolutionary
tracks and isochrones, but the mass result is only as reliable as the models
used. The recent paper by Torres et al (2009) showed that accurate values for
stellar masses and radii could be obtained from a calibration using T_eff, log
g and [Fe/H]. We investigate whether a similarly good calibration can be
obtained by substituting log rho - the fundamental parameter measured for the
host star of a transiting planet - for log g, and apply this to star-exoplanet
systems. We perform a polynomial fit to stellar binary data provided in Torres
et al (2009) to obtain the stellar mass and radius as functions of T_eff, log
rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo
analysis. We apply the resulting equations to measurements for seventeen
SuperWASP host stars, and also demonstrate the application of the calibration
in a Markov Chain Monte Carlo analysis to obtain accurate system parameters
where spectroscopic estimates of effective stellar temperature and metallicity
are available. We show that the calibration using log rho produces accurate
values for the stellar masses and radii; we obtain masses and radii of the
SuperWASP stars in good agreement with isochrone analysis results. We ascertain
that the mass calibration is robust against uncertainties resulting from poor
photometry, although a good estimate of stellar radius requires good-quality
transit light curve to determine the duration of ingress and egress.Comment: 5 pages, 2 figures, accepted for publication in A&
The first WASP public data release
The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface () to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them
Qatar-1b: a hot Jupiter orbiting a metal-rich K dwarf star
We report the discovery and initial characterisation of Qatar-1b, a hot
Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the
Alsubai Project exoplanet transit survey. We describe the strategy used to
select candidate transiting planets from photometry generated by the Alsubai
Project instrument. We examine the rate of astrophysical and other false
positives found during the spectroscopic reconnaissance of the initial batch of
candidates. A simultaneous fit to the follow-up radial velocities and
photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius
of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and
0.0234 AU for an orbit assumed to be circular. The stellar density, effective
temperature and rotation rate indicate an age greater than 4 Gyr for the
system.Comment: 8 pages, 5 figures, submitted to Monthly Notices of the Royal
Astronomical Societ
New periodic variable stars coincident with ROSAT sources discovered using SuperWASP
We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on
their very red colour and light curve morphology
Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit
We report the discovery and initial characterization of Qatar-2b, a hot
Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short
period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j
and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a
span of 153 days revealed the presence of a second companion in an outer orbit.
The Systemic Console yielded plausible orbits for the outer companion, with
periods on the order of a year and a companion mass of at least several M_j.
Thus Qatar-2 joins the short but growing list of systems with a transiting hot
Jupiter and an outer companion with a much longer period. This system
architecture is in sharp contrast to that found by Kepler for multi-transiting
systems, which are dominated by objects smaller than Neptune, usually with
tightly spaced orbits that must be nearly coplanar
WASP-25b: a 0.6 MJ planet in the Southern hemisphere
We report the detection of a 0.6 MJ extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76 d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of Rp= 1.22 RJ and Mp= 0.58 MJ around a slightly metal-poor solar-type host star, [Fe/H]=− 0.05 ± 0.10, of R*= 0.92 R⊙ and M*= 1.00 M⊙. WASP-25b is found to have a density of ρp= 0.32 ρJ, a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets wel
A fast hybrid algorithm for exoplanetary transit searches
We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V= 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-u
- …