117 research outputs found

    RR Lyrae Stars In The GCVS Observed By The Qatar Exoplanet Survey

    Get PDF
    We used the light curve archive of the Qatar Exoplanet Survey (QES) to investigate the RR Lyrae variable stars listed in the General Catalogue of Variable Stars (GCVS). Of 588 variables studied, we reclassify 14 as eclipsing binaries, one as an RS Canum Venaticorum-type variable, one as an irregular variable, four as classical Cepheids, and one as a type II Cepheid, while also improving their periods. We also report new RR Lyrae sub-type classifications for 65 variables and improve on the GCVS period estimates for 135 RR Lyrae variables. There are seven double-mode RR Lyrae stars in the sample for which we measured their fundamental and first overtone periods. Finally, we detect the Blazhko effect in 38 of the RR Lyrae stars for the first time and we successfully measured the Blazhko period for 26 of them.Comment: Accepted IBV

    An Improved Method for Estimating the Masses of Stars with Transiting Planets

    Get PDF
    To determine the physical parameters of a transiting planet and its host star from photometric and spectroscopic analysis, it is essential to independently measure the stellar mass. This is often achieved by the use of evolutionary tracks and isochrones, but the mass result is only as reliable as the models used. The recent paper by Torres et al (2009) showed that accurate values for stellar masses and radii could be obtained from a calibration using T_eff, log g and [Fe/H]. We investigate whether a similarly good calibration can be obtained by substituting log rho - the fundamental parameter measured for the host star of a transiting planet - for log g, and apply this to star-exoplanet systems. We perform a polynomial fit to stellar binary data provided in Torres et al (2009) to obtain the stellar mass and radius as functions of T_eff, log rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo analysis. We apply the resulting equations to measurements for seventeen SuperWASP host stars, and also demonstrate the application of the calibration in a Markov Chain Monte Carlo analysis to obtain accurate system parameters where spectroscopic estimates of effective stellar temperature and metallicity are available. We show that the calibration using log rho produces accurate values for the stellar masses and radii; we obtain masses and radii of the SuperWASP stars in good agreement with isochrone analysis results. We ascertain that the mass calibration is robust against uncertainties resulting from poor photometry, although a good estimate of stellar radius requires good-quality transit light curve to determine the duration of ingress and egress.Comment: 5 pages, 2 figures, accepted for publication in A&

    The first WASP public data release

    Get PDF
    The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface () to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them

    Qatar-1b: a hot Jupiter orbiting a metal-rich K dwarf star

    Full text link
    We report the discovery and initial characterisation of Qatar-1b, a hot Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the Alsubai Project exoplanet transit survey. We describe the strategy used to select candidate transiting planets from photometry generated by the Alsubai Project instrument. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and 0.0234 AU for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.Comment: 8 pages, 5 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    New periodic variable stars coincident with ROSAT sources discovered using SuperWASP

    Get PDF
    We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on their very red colour and light curve morphology

    Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit

    Get PDF
    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M_j. Thus Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar

    WASP-25b: a 0.6 MJ planet in the Southern hemisphere

    Get PDF
    We report the detection of a 0.6 MJ extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76 d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of Rp= 1.22 RJ and Mp= 0.58 MJ around a slightly metal-poor solar-type host star, [Fe/H]=− 0.05 ± 0.10, of R*= 0.92 R⊙ and M*= 1.00 M⊙. WASP-25b is found to have a density of ρp= 0.32 ρJ, a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets wel

    A fast hybrid algorithm for exoplanetary transit searches

    Get PDF
    We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V= 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-u
    corecore