896 research outputs found

    Evaluation of synergistic effect between ethyl formate and phosphine for control of three species Aphids in perishable commodity

    Get PDF
    Methyl bromide (MB) as a fumigant for Quarantine and Pre-shipment (QPS) could offer eradication of target pests within shorter fumigation period and without phytotoxicity. Therefore, unlike MB alternatives for soil fumigation, there is no ideally MB alternative fumigant for QPS purpose, particularly for perishable commodities. It is critically important that within shorter fumigation time requires killing all target insect pests and without effect of quality and deliver treated fruit and vegetables to the final consumer. Aphids are pests frequently found in imported and exported fruit and vegetables. Aphids was known as quarantine pest hard to control when conduct short period fumigation with phosphine (PH3) and low dose of ethyl formate (EF). Ethyl formate can lead to highly sorption and phytotoxic damage of some perishable commodities such as strawberries and cut flowers, especially at lower temperature (< 8°C). Here, we reported that synergistic effect between ethyl formate and phosphine at lower dosages and temperature. The mixture of ethyl formate and phosphine had synergistic effect to control adult and nymph stages of tested cotton aphid (Aphis gossypii), green peach aphid (Myzus persicae) and turnip aphid (Lipaphis erysimi). When 0.5 mg/L of PH3 combined with different levels of EF at 5 and 20°C for 2 hours fumigation, there was significantly difference in terms of LCT50% and LCT90% values in comparison with EF or PH3 alone. This new technology could be meet QPS requirement that is shorter exposure time and less damage of perishable commodities

    Aqueous one-pot synthesis of epoxy-functional diblock copolymer worms from a single monomer: new anisotropic scaffolds for potential charge storage applications

    Get PDF
    Nitroxide-functional polymers have garnered considerable interest in recent years and appear to hold promise for energy storage applications. However, their synthesis can be both expensive and time-consuming. Here, we propose a highly convenient method for the preparation of TEMPO-functional diblock copolymer nanoparticles directly in water. Epoxy-functional diblock copolymer worms are synthesized from a single monomer, glycidyl methacrylate (GlyMA), using a three-step, one-pot protocol in aqueous solution via polymerization-induced self-assembly (PISA). First, an initial aqueous emulsion of GlyMA was heated at 85 °C for 9 h to afford an aqueous solution of glycerol monomethacrylate (GMA). Then reversible addition-fragmentation chain transfer (RAFT) polymerization of GMA was conducted in aqueous solution using a dicarboxylic acid-based RAFT agent to produce a water-soluble PGMA homopolymer. Finally, chain extension of this precursor block via RAFT aqueous emulsion polymerization of GlyMA at 50 °C produced amphiphilic diblock copolymer chains that self-assembled in situ to form a 15% w/w aqueous dispersion of diblock copolymer worms. These worms can be derivatized directly using 4-amino-TEMPO in aqueous solution, affording novel crosslinked anisotropic nanoparticles that contain a relatively high density of stable nitroxide radicals for potential charge storage applications

    POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    Get PDF
    Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al

    Integral effect non-loca test results for the integral type reactor SMART-P using the VISTA facility

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.The SMART-P a pilot plant of the integral type reactor SMART(System Integrated Modular Advanced Reactor) which has new innovative design features aimed at achieving a highly enhanced safety and improved economics. A test facility (VISTA) has been constructed to simulate the SMART-P which is a full height and 1/96 volume scaled test facility with respect to the SMART-P. The VISTA facility has been used to understand the thermal-hydraulic behavior including several operational transients and design basis accidents and finally it will contribute to verifying the system design of the SMART-P. During the past five years, several integral effect tests have been carried out and reported, including performance tests, MCP(Main Coolant Pump) transients, power transients and heatup or cooldown procedures. In the present study, the VISTA facility was subjected to the major safety related non-LOCA transient conditions in a primary and secondary system, including a power increase due to a CEDM (Control Element Drive Mechanism) withdrawal, a feedwater decrease and a steam flow increase in order to verify the safety analysis code for the SMART-P.cs201

    Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm

    Get PDF
    International audienceFrequent itemset mining is one of the major data mining issues. Once generated by algorithms, the itemsets can be automatically processed, for instance to extract association rules. They can also be explored with visual tools, in order to analyze the emerging patterns. Graphical itemsets representation is a convenient way to obtain an overview of the global interaction structure. However, when the complexity of the database increases, the network may become unreadable. In this paper, we propose to display itemsets on concentric circles, each one being organized to lower the intricacy of the graph through an optimization process. Thanks to a graph bundling algorithm, we finally obtain a compact representation of a large set of itemsets that is easier to exploit. Colors accumulation and interaction operators facilitate the exploration of the new bundle graph and to illustrate how much an itemset is supported by the data

    CYGNSS Ocean Altimetry: A Status Report

    Get PDF
    ComunicaciĂłn expuesta online en el CYGNSS Science Team Summer Meeting celebrado del 27 al 29 de julio de 202

    Magetic softening of Young's modulus of amorphous Fe90Zr10

    Full text link
    The Young's modulus and the internal friction of amorphous Fe90_{90}Zr10_{10} alloy were measured near the Curie temperature using the vibrating reed technique. The modulus shows softening around Tc≈227KT_c\approx 227K and the internal friction undergoes drastic increase at TcT_c. It is found that both the Young's modulus and the reciprocal of internal friction are inversely proportional to the magnetic susceptibility in the paramagnetic phase.Comment: 10 pages, RevTeX, 4 figures on request, POSTECH-amos-9400

    A fuzzy ordinary regression method for modeling customer preference in tea maker design

    Get PDF
    Faced with fierce competition in marketplaces, manufacturers need to determine the appropriate settings of engineering characteristics of the new products so that the best customer preferences of the products can be obtained. To achieve this, functional models relating customer preferences to engineering characteristics need to be developed. As information regarding functional relationships between customer preferences are generally subjective or heuristic in nature, development of the customer preference models involve two uncertainties, namely fuzziness and randomness. Existing approaches use only fuzzy-based technologies to address the uncertainty caused by fuzziness. They are not designed to address the randomness of the observed data which is caused by a limited knowledge of the variability of influences between customer preferences and engineering characteristics. In this article, a fuzzy ordinary regression method is proposed to develop the customer preference models which are capable of addressing the two uncertainties of crispness and fuzziness of the customer preferences. A case study of a tea maker design which involves both uncertainties is used to demonstrate the effectiveness of the proposed method

    Solution of the Crow-Kimura and Eigen models for alphabets of arbitrary size by Schwinger spin coherent states

    Get PDF
    To represent the evolution of nucleic acid and protein sequence, we express the parallel and Eigen models for molecular evolution in terms of a functional integral representation with an hh-letter alphabet, lifting the two-state, purine/pyrimidine assumption often made in quasi-species theory. For arbitrary hh and a general mutation scheme, we obtain the solution of this model in terms of a maximum principle. Euler's theorem for homogeneous functions is used to derive this `thermodynamic' formulation of evolution. The general result for the parallel model reduces to known results for the purine/pyrimidine h=2h=2 alphabet and the nucleic acid h=4h=4 alphabet for the Kimura 3 ST mutation scheme. Examples are presented for the h=4h=4 and h=20h=20 cases. We derive the maximum principle for the Eigen model for general hh. The general result for the Eigen model reduces to a known result for h=2h=2. Examples are presented for the nucleic acid h=4h=4 and the amino acid h=20h=20 alphabet. An error catastrophe phase transition occurs in these models, and the order of the phase transition changes from second to first order for smooth fitness functions when the alphabet size is increased beyond two letters to the generic case. As examples, we analyze the general analytic solution for sharp peak, linear, quadratic, and quartic fitness functions.Comment: 50 pages, 8 figures, to appear in J. Stat. Phys; some typos fixe
    • 

    corecore