
J Stat Phys (2009) 135: 429–465
DOI 10.1007/s10955-009-9732-2

Solution of the Crow-Kimura and Eigen Models
for Alphabets of Arbitrary Size by Schwinger Spin
Coherent States

Enrique Muñoz · Jeong-Man Park · Michael W. Deem

Received: 24 September 2008 / Accepted: 20 March 2009 / Published online: 18 April 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract To represent the evolution of nucleic acid and protein sequence, we express the
parallel and Eigen models for molecular evolution in terms of a functional integral repre-
sentation with an h-letter alphabet, lifting the two-state, purine/pyrimidine assumption often
made in quasi-species theory. For arbitrary h and a general mutation scheme, we obtain the
solution of this model in terms of a maximum principle. Euler’s theorem for homogeneous
functions is used to derive this ‘thermodynamic’ formulation of evolution. The general re-
sult for the parallel model reduces to known results for the purine/pyrimidine h = 2 alphabet
and the nucleic acid h = 4 alphabet for the Kimura 3 ST mutation scheme. Examples are
presented for the h = 4 and h = 20 cases. We also derive the maximum principle for the
Eigen model for general h. The general result for the Eigen model reduces to a known result
for h = 2. Examples are presented for the nucleic acid h = 4 and the amino acid h = 20
alphabet. An error catastrophe phase transition occurs in these models, and the order of the
phase transition changes from second to first order for smooth fitness functions when the
alphabet size is increased beyond two letters to the generic case. As examples, we analyze
the general analytic solution for sharp peak, linear, quadratic, and quartic fitness functions.

Keywords Molecular evolution · Quasispecies theory · Evolution alphabet size · Error
catastrophe

1 Introduction

There are two classical physical models of molecular evolution: the Eigen model [1–3] and
the Parallel or Crow-Kimura model [4]. These models were originally formulated in the
language of chemical kinetics [1], by a large system of differential equations representing
the time evolution of the relative frequencies of each sequence type. Quasi-species models
capture the basic microscopic processes of mutation and replication, for an infinite popula-
tion of binary sequences. The most remarkable feature of these models is the existence of a
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phase transition, termed the “error threshold” [1, 5], when the mutation rate is below a criti-
cal value, separating a disordered non-selective phase from an organized or “quasi-species”
phase. The quasi-species is characterized by a population of closely related mutants, rather
than by identical sequences [1–3], and its emergence is related to the auto-catalytic character
of the replication process [1, 5], which exponentially enriches the proportion of the fittest
mutants in the population. Experimental studies provide support for quasi-species theory in
the evolution of RNA viruses [6, 7].

The choice of a binary alphabet, which simplifies the mathematical and numerical analy-
sis of the theory, represents a coarse graining of the four-letter alphabet of the nucleic acids
DNA/RNA (A, C, G, T/U), by considering the two basic chemical structures of nitrogenated
bases, purines (A, G) and pyrimidines (C, T/U). The choice of a four-letter alphabet rep-
resents nucleic acids. A 20-letter alphabet represents amino acids and protein structure and
permits a close connection between sequence and fitness.

Most numerical and analytical studies on quasi-species models consider the binary al-
phabet simplification [1–4]. In particular, the assumption of a binary alphabet allows for an
exact mapping of the quasi-species models into a 2D Ising model [8, 9], or into a quan-
tum spin chain [10–14]. An exception is [15], where a four-letter alphabet was studied by
a quantum spin chain representation of the parallel model. Other approaches to the nucleic
acid evolution problem have been presented in [16, 17]. In all these studies it has been
shown, through the application of different methodologies, that the steady state mean fitness
of the population can be expressed in terms of a maximum principle, in the limit of infi-
nite sequence length (N → ∞). The Frobenius-Perrone theorem guarantees that there is a
unique steady-state population distribution. It has been shown [18] that for a general family
of linear (or effectively linear) models that evolve according to a matrix H = M + R, with
M a Markov generator (typically representing mutations) and R a diagonal matrix (usu-
ally representing replication or degradation) of dimension N → ∞, the Frobenius-Perrone
largest eigenvalue can be expressed in terms of a Raleigh-Ritz variational problem. The high
dimensional variational problem can be reduced to a low-dimensional maximum principle
with an error O(1/N), when basic symmetries can be assumed in the evolution matrix, such
as permutation invariance of the replication rate, or symmetric mutation rates, which allows
for a lumping [18] of the large sequence space into sequence types or classes. This analysis
was applied in [17] to obtain a variational expression for the mean fitness in the Kimura
model with a four letters alphabet. We note that the Eigen model, where replication and
(multiple) mutations are correlated, possesses a different algebraic structure than the gen-
eral family of models studied in [18]. In the Eigen model, the evolution matrix is of the form
H = Q × R, with Q representing the mutation matrix, and R a diagonal replication matrix.

In this article, we present exact analytical solutions of the h-alphabet Crow-Kimura and
Eigen models by means of a quantum field theory. Our method generalizes the Schwinger
spin coherent field theory for the binary alphabet in [19] to an alphabet of arbitrary size h.
This method has also been recently applied in the solution of a model that includes transfer
of genetic material between sequences in quasi-species theory [20, 21], and two-parent re-
combination [21]. For the parallel model, we present exact analytical solutions of this field
theory, in terms of a maximum principle, for the steady state mean fitness of the popula-
tion and average composition, (44). We present as examples, results for the Kimura 3 ST
mutation scheme [22], (54). We develop in detail the result for the symmetric mutation rate
scheme, (55), for four different examples of microscopic fitness functions: sharp peak (57)
and (58), Fujiyama landscape (60)–(61), a quadratic landscape (65)–(69), and a quartic land-
scape (71) and (72). In Sect. 2.9, we apply our general formula to derive the mean fitness
for the symmetric, general h case and discuss the h = 20 amino acid alphabet, (74). For the
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symmetric case, we present results for the sharp peak, (75)–(77), and the quadratic case,
(77).

For the Eigen model, we present the exact expression for arbitrary alphabet size h, (106).
As an example, we apply the general expression to a mutation scheme analogous to the
Kimura 3 ST [22], (112). We analyze in detail the solution for the symmetric mutations
rate, (113), for four different examples of microscopic fitness functions: sharp peak (114)
and (115), Fujiyama landscape (116)–(119), quadratic fitness landscape (121)–(123), and
quartic fitness landscape (125) and (126). In Sect. 3.8, we apply our general solution to
derive the mean fitness for the symmetric, general h case and discuss the h = 20 amino acid
alphabet, (127). For the symmetric case, we present results for the sharp peak, (128)–(129),
and the quadratic case.

These results bring quasi-species theory closer to the real microscopic evolutionary dy-
namics that occurs in the natural four-letter alphabet of nucleic acids or the 20-letter alphabet
of amino acids.

2 The Parallel Model for an Alphabet of Size h

The parallel model [4] describes the continuous time evolution of an infinite size population
of viral genetic sequences. The evolutionary dynamics is driven by point mutations and
selection, with mutations occurring in parallel and independently of viral replication. Each
viral genome is represented as a sequence of N letters, from an alphabet of size h, and
therefore the total number of different viral genomes in the population is hN . If we describe
a viral genetic sequence in the alphabet of nucleic acids (DNA or RNA), the natural choice
would be h = 4, and explicitly the alphabet corresponds to (A, C, G, T or U). It is common,
to simplify the theoretical analysis, to choose instead a coarse grained alphabet of size h = 2,
by ‘lumping’ together purines (A, T or U) and pyrimidines (C, G). Alternatively, to describe
evolution at the scale of protein sequences, the natural choice is to consider the h = 20
amino acid alphabet. We here consider the case of general h.

The probability pi for a virus to have a genetic sequence Si , 1 ≤ i ≤ hN , evolves accord-
ing to the following system of nonlinear differential equations

dpi

dt
= pi

(
ri −

hN∑
j=1

rjpj

)
+

hN∑
j=1

μijpj (1)

Here ri is replication rate of sequence Si , and μij is the mutation rate from sequence Sj

into sequence Si . The nonlinear term in (1) represents the average replication rate in the
population, or mean fitness. This non-linear term enforces the conservation of probability,∑

i pi = 1. This term can be removed through a simple exponential transformation, to obtain
the linear system of differential equations

dqi

dt
= riqi +

hN∑
j=1

μijqj (2)

where pi(t) = qi(t)/
∑

j qj (t).
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2.1 Fitness Landscape

We will assume that the replication rate (fitness) of an individual in the population depends
on its relative composition with respect to a wild-type sequence Sw . We define the relative
composition variables, xα , to be the number of letters of type α, divided by N . The number
of different letters is h, and the set of labels α refers to the set of chemical possibilities,
such as {purine,pyrimidine}, {A, C, G, T}, or the 20 amino acids. For an alphabet of size
h, at each site along the sequence, there are h − 1 independent compositions 0 ≤ xα ≤
1, for 1 ≤ α ≤ h − 1. Alternatively, these compositions may be interpreted as normalized
Hamming distances from a reference wild-type sequence. Therefore, the replication rate for
a sequence Si in the parallel model (1) is defined by the fitness function

ri = Nf (x1, x2, . . . , xh−1) (3)

where the xα are defined within the simplex
∑h−1

α=1 xα ≤ 1.

2.2 Schwinger Spin Coherent States Representation of the Parallel Model

We can express the parallel model in operator form, by generalizing the method presented
in [19]. We define h kinds of creation and annihilation operators: â†

α(j), âα(j), 1 ≤ α ≤ h

and 1 ≤ j ≤ N . These operators satisfy the commutation relations[
âα(i), â

†
β(j)

]
= δαβδij[

âα(i), âβ(j)
]=[

â†
α(i), â

†
β(j)

]
= 0

(4)

These operators create/annihilate a sequence letter state 1 ≤ α ≤ h, at position 1 ≤ j ≤ N in
the sequence. Since at each site there is a single letter, we enforce the constraint

h∑
α=1

â†
α(j)âα(j) = 1 (5)

for all 1 ≤ j ≤ N .
We define ni

α(j) as the power on â†
α(j) for the sequence state Si , 1 ≤ i ≤ hN , defined by

the vectors

|Si〉 =
N∏

j=1

|�ni
j 〉 (6)

where |�ni
j 〉 = ∏h

α=1[â†
α(j)]ni

α(j)|0〉. The constraint in (5) ensures that the condition∑h

α=1 ni
α(j) = 1 for all i, j .

We introduce the unnormalized population state vector

|ψ〉 =
hN∑
i=1

q(Si)|Si〉 (7)

which evolves in time according to the equation

d

dt
|ψ〉 = −Ĥ |ψ〉 (8)
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Here, the Hamiltonian operator, to highest order in N , is given by

−Ĥ = m̂ + Nf (x̂1, x̂2, . . . , x̂h−1) (9)

where m̂ represents the mutation operator, and x̂α represents the compositions in operator
form.

Let us first discuss the mutation operator m̂. In the most general case, h(h − 1) possible
different substitutions can occur at each site in the sequence, i.e. β → α, with mutation rate
μαβ that need not be symmetric.

Each individual process can be written in the operator form

�̂a†(j)τ αβ �̂a(j) = â†
α(j)âβ(j) +

∑
γ �=α

â†
γ (j)âγ (j) (10)

which represents the creation of letter α by annihilation of letter β . Here, the matrices ταβ

are explicitly defined by

[
ταβ

]
ργ

= δραδγβ + δργ (1 − δρα) (11)

After these definitions, the more general expression for the mutation operator is

m̂ =
N∑

j=1

h∑
α �=β=1

μαβ

[�̂a†(j)τ αβ �̂a(j) − �̂a†(j) · �̂a(j)
]

(12)

Let us now consider the Schwinger spin coherent state representation of the average base
composition terms,

x̂α = 1

N

N∑
j=1

â†
α(j)âα(j) ≡ 1

N

N∑
j=1

�̂a†(j)	α �̂a(j) 1 ≤ α ≤ h − 1 (13)

where we defined the matrices

[
	α

]
ργ

= δραδγα (14)

We introduce the vector notation

�̂x = (x̂1, x̂2, . . . , x̂h−1) (15)

� = (	1,	2, . . . ,	h−1) (16)

Considering the previous expressions, the Hamiltonian operator becomes

−Ĥ = Nf

⎡
⎣ 1

N

N∑
j=1

�̂a†(j)��̂a(j)

⎤
⎦+

N∑
j=1

h∑
α �=β=1

μαβ

[�̂a†(j)τ αβ �̂a(j) − �̂a†(j) · �̂a(j)
]

(17)
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2.3 Functional Integral Representation of the Parallel Model

We convert the operator representation of the parallel model into a functional integral form
by introducing Schwinger spin coherent states [19]. We define a coherent state by

|�z(j)〉 = e
�̂a†(j)·�z(j)−�z∗(j)·�̂a(j)|0〉

= e− 1
2 �z∗(j)·�z(j)

∞∑
m1,m2,...,mh=0

h∏
α=1

[zα(j)]mα

√
mα!

|(m1,m2, . . . ,mh)j 〉 (18)

Coherent states satisfy the completeness relation

I =
∫ N∏

j=1

d�z∗(j)d�z(j)

πh
|{�z}〉〈{�z}| (19)

The overlap between a pair of coherent states is given by

〈�z ′
(j)|�z(j)〉 = e− 1

2 {�z ′∗(j)·[�z′
(j)−�z(j)]−[�z ′∗(j)−�z∗(j)]·�z(j)} (20)

To enforce the constraint (5), we introduce the projector

P̂ =
N∏

j=1

P̂ (j) =
N∏

j=1

�[�̂a†(j) · �̂a(j) − 1]

=
∫ 2π

0

N∏
j=1

dλj

2π
eiλj [�̂a†(j)·�̂a(j)−1] (21)

At long times, due to the Perrone-Frobenius theorem, we find that the system evolution
is dominated by the unique largest eigenvalue, fm, of −Ĥ and its corresponding eigenvector
|ψ∗〉, such that e−Ĥ t |{�n0}〉 ∼ efmt |ψ∗〉.

To evaluate this eigenvalue, we perform a Trotter factorization, for ε = t/M , with M →
∞, and introduce resolutions of the identity as defined by (19) at each time slice [19]

e−Ĥ t = lim
M→∞

∫ ⎡
⎣ M∏

k=1

N∏
j=1

d�z∗
k(j)d�zk(j)

πh

⎤
⎦ |{�zM}〉

M∏
k=1

〈{�zk}|e−εĤ |{�zk−1}〉〈{�z0}| (22)

We define the partition function

Z = Tr e−Ĥ t P̂

=
∫ 2π

0

⎡
⎣ N∏

j=1

dλj

2π

⎤
⎦ e−iλj lim

M→∞

∫ ⎡
⎣ M∏

k=1

N∏
j=1

d�z∗
k(j)d�zk(j)

πh

⎤
⎦ e−S[�z∗,�z] (23)

Here, we defined

e−S[�z∗,�z] =
M∏

k=1

〈{�zk}|e−εĤ |{�zk−1}〉 (24)
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with the boundary condition �z0(j) = eiλj �zM(j) [19]. An explicit expression for the matrix
element in the coherent states representation is

〈{�zk}|e−εĤ |{�zk−1}〉

= exp

(
− 1

2

N∑
j=1

[�z∗
k(j) · �zk(j) − 2�z∗

k(j) · �zk−1(j) + �z∗
k−1(j) · �zk−1(j)]

− εN

h∑
α �=β=1

μαβ + εNf

⎡
⎣ 1

N

N∑
j=1

�z∗
k(j)��zk−1(j)

⎤
⎦

+ ε

N∑
j=1

�z∗
k(j)

h∑
α �=β=1

μαβταβ�zk−1(j)

)
(25)

Let us now introduce an (h − 1)-component vector field �xk = (x1
k , x

2
k , . . . , x

h−1
k ), with

xα
k = 1

N

N∑
j=1

�z∗
k(j)	α�zk−1(j) (26)

We make this definition by introducing an integral representation of the corresponding delta
function

1 =
∫

D[�x]
M∏

k=1

δ(h−1)

⎡
⎣�xk − 1

N

N∑
j=1

�z∗
k(j)��zk−1(j)

⎤
⎦

=
∫ [

M∏
k=1

h−1∏
α=1

dx̄α
k dxα

k

2π

]
e

i
∑M

k=1
�̄xk ·�xk− i

N

∑M
k=1

∑N
j=1 �z∗

k
(j) �̄xk ·��zk−1(j)

=
∫ [

M∏
k=1

h−1∏
α=1

iεNdx̄α
k dxα

k

2π

]
e

−εN
∑M

k=1
�̄xk ·�xk+ε

∑M
k=1

∑N
j=1 �z∗

k
(j) �̄xk ·��zk−1(j) (27)

Inserting this into the functional integral (23), we have [19]

Z = lim
M→∞

∫
D[�̄x]D[�x]eεN

∑M
k=1[f (�xk)−�̄xk ·�xk−∑h

α �=β=1 μαβ ]

×
∫

D[�z∗]D[�z]D[λ]
N∏

j=1

e−iλj eε
∑M

l,k=1 �z∗
k
(j)Skl (j)�zl (j)

∣∣∣∣{�z0}={eiλj �zM }
(28)

The matrix S(j) has the structure

S(j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . −e−iλj A1(j)

−A2(j) I 0 . . . 0

0 −A3(j) I . . . 0

. . .

0 . . . −AM(j) I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)
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where Ak(j) = I + ε[∑h

α �=β=1 μαβταβ + �̄xk · �]. After performing the Gaussian integration
over the coherent state fields, we obtain

Z = lim
M→∞

∫
D[�̄x]D[�x]eεN

∑M
k=1[f (�xk)−�̄xk ·�xk−∑h

α �=β=1 μαβ ]

×
∫

D[λ]
N∏

j=1

e−iλj
[
detS(j)

]−1
(30)

Here,

detS(j) = det

[
I − eiλj

M∏
k=1

Ak(j)

]

= det
[
I − eiλj T̂ e

ε
∑M

k=1[∑h
α �=β=1 μαβταβ+�̄xk ·�]

]

= eTr ln[I−e
iλj T̂ e

ε
∑M

k=1[∑h
α �=β=1 μαβ ταβ+�̄xk ·�]] (31)

where the operator T̂ indicates time ordering. Substituting this result in the partition func-
tion, we obtain

Z = lim
M→∞

∫
D[�̄x]D[�x]eεN

∑M
k=1[f (�xk)−�̄xk ·�xk−∑h

α �=β=1 μαβ ]

×
∫

D[λ]
N∏

j=1

e−iλj e−Tr ln[I−e
iλj T̂ e

ε
∑M

k=1[∑h
α �=β=1 μαβ ταβ+�̄xk ·�]]

= lim
M→∞

∫
D[�̄x]D[�x]eεN

∑M
k=1[f (�xk)−�̄xk ·�xk−∑h

α �=β=1 μαβ ]
N∏

j=1

Q (32)

with

Q = lim
M→∞

Tr T̂

M∏
k=1

⎡
⎣I + ε

(
h∑

α �=β=1

μαβταβ + �̄xk · �
)⎤
⎦

= lim
M→∞

Tr T̂ e
ε
∑M

k=1[∑h
α �=β=1 μαβταβ+�̄xk ·�]

= Tr T̂ e
∫ t

0 dt ′[∑h
α �=β=1 μαβταβ+�̄x(t ′)·�] (33)

After taking the limit M → ∞, (32) becomes

Z =
∫

D[�̄x]D[�x]e−S[ �̄x,�x] (34)

where the effective action is given by

S[�̄x, �x] = −N

∫ t

0
dt ′[f (�x(t ′)) − �̄x(t ′) · �x(t ′) −

h∑
α �=β=1

μαβ ] − N lnQ (35)
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Here, we have defined

Q = Tr T̂ e
∫ t

0 dt ′[∑h
α �=β=1 μαβταβ+∑h−1

α=1 x̄α(t ′)	α ] (36)

2.4 The Large N Limit of the Parallel Model is a Saddle Point

Considering that the sequence length N is very large, N → ∞, we can evaluate the func-
tional integral (34) for the partition function by looking for a saddle point. With the action
defined in (36), we have

δS

δxα

∣∣∣∣�xc, �̄xc

=−N

(
∂f [�x]
∂xα

∣∣∣∣
c

− x̄α
c

)
= 0

δS

δx̄α

∣∣∣∣
�xc, �̄xc

=−N

(
−xα

c + 1

Q

δQ

δx̄α

∣∣∣∣
�xc, �̄xc

)
= 0

(37)

We denote the value of the action at the saddle point by Sc . We have therefore the system of
equations

x̄α
c = ∂f [�x]

∂xα

∣∣∣∣
c

(38)

xα
c = 〈	α〉,1 ≤ α ≤ h − 1 (39)

where we defined

〈(·)〉 = Tr(·)et[∑h
α �=β=1 μαβταβ+∑h−1

α=1 x̄α
c 	α ]

Tret[∑h
α �=β=1 μαβταβ+∑h−1

α=1 x̄α
c 	α ] (40)

After this saddle-point analysis, we obtain a general expression for the mean fitness fm

of the population, for an arbitrary microscopic fitness function f (�x),

fm = lim
N,t→∞

−Sc

Nt
= max

{�xc, �̄xc}

⎡
⎣f (�xc) − �̄xc · �xc −

h∑
α �=β=1

μαβ + λmax

⎤
⎦ (41)

with λmax defined as

λmax = lim
t→∞

lnQ

t
(42)

and corresponding to the largest eigenvalue of the matrix

M( �̄xc, {μαβ}) =
h∑

α �=β=1

μαβταβ +
h−1∑
α=1

x̄α
c 	α (43)

As shown in detail in Appendix 1, the compositions x̄α
c can be eliminated to reduce (41)

to the final expression

f (h)
m = max

{x1
c ,x2

c ,...,xh−1
c }

{
f (x1

c , x
2
c , . . . , x

h−1
c ) +

h−1∑
α �=β=1

μαβ

[√
xα

c x
β
c − xα

c

]
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Fig. 1 The generalized mutation
scheme

+
h−1∑
α=1

μαh

[√√√√xα
c

(
1 −

h−1∑
γ=1

x
γ
c

)
− xα

c

]

+
h−1∑
β=1

μhβ

[√√√√(
1 −

h−1∑
γ=1

x
γ
c

)
x

β
c +

h−1∑
γ=1

xγ
c − 1

]}
(44)

Here, the compositions 0 ≤ xα
c ≤ 1 are defined within the simplex

∑h−1
α=1 xα

c ≤ 1.

2.5 The Purine/Pyrimidine Alphabet h = 2

Most analytical and numerical studies of quasi-species models have been formulated in the
past [12, 14, 19, 20] by using a coarse-grained alphabet of nucleotides, where the nucleotide
bases are lumped into purines and pyrimidines, and hence h = 2. The maximum principle
for this binary alphabet can be derived from the general expression (44), by assuming a
symmetric mutation rate μ12 = μ21 = μ, and by noticing that a single composition x1

c ≡ xc

(or normalized Hamming distance) is required in this case,

f (2)
m = max

{0≤xc≤1}

{
f (xc) + μ[2√xc(1 − xc) − 1]

}
(45)

It is customary to use in this case a magnetization coordinate [12, 14, 19, 20] defined as
ξc = 1 − 2xc , and hence (45) becomes

f (2)
m = max

{−1≤ξc≤1}

{
f (ξc) + μ

√
1 − ξ 2

c − μ

}
(46)

Equation (46) is a well known result, which has been obtained in the past with different
methods [12, 14], including a version of the Schwinger boson method employed in the
present work [19]. It is a special case of (44).

2.6 The Nucleic Acid Alphabet h = 4

In the nucleic acids RNA or DNA, the alphabet is constituted by the monomers of these
polymeric chains, which are h = 4 different nucleotides A, C, G, T/U. The general mutation
scheme displayed in Fig. 1 is represented by setting h = 4 in our general solution (44), with
3 independent compositions (or normalized Hamming distances) x1

c , x2
c , x3

c

fm = max
{x1

c ,x2
c ,x3

c }

{
f (x1

c , x
2
c , x

3
c ) +

3∑
α �=β=1

μαβ

[√
xα

c x
β
c − xα

c

]

+
3∑

α=1

μα4

[√√√√xα
c

(
1 −

3∑
γ=1

x
γ
c

)
− xα

c

]
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Fig. 2 The Kimura 3 ST
mutation scheme

+
3∑

β=1

μ4β

[√√√√(
1 −

3∑
γ=1

x
γ
c

)
x

β
c +

3∑
γ=1

xγ
c − 1

]}
(47)

Here, the compositions xα
c are defined within the simplex x1

c + x2
c + x3

c ≤ 1.
An interesting reduction of this general model is provided by the Kimura 3 ST mutation

scheme [15–17, 22], Fig. 2. The Kimura 3 ST mutation scheme considers mutations in three
independent directions, with rates μ1,μ2,μ3

X

↗ μ1

→ μ2

↘
μ3

Accordingly, three components of the Hamming distance between a pair of sequences Si

and Sj are defined as follows

d1(Si, Sj ) = #A↔C(Si, Sj ) + #G↔T (Si, Sj )

d2(Si, Sj ) = #A↔G(Si, Sj ) + #C↔T (Si, Sj ) (48)

d3(Si, Sj ) = #A↔T (Si, Sj ) + #C↔G(Si, Sj )

Here, #X↔Y (Si, Sj ) is the number of sites at which X and Y are exchanged between se-
quences Si and Sj . The total Hamming distance between sequences Si and Sj is given by

d(Si, Sj ) = d1(Si, Sj ) + d2(Si, Sj ) + d3(Si, Sj ) (49)

The mutation rate is therefore modeled by the function

μij =

⎧⎪⎪⎨
⎪⎪⎩

μα, dα(Si, Sj ) = d(Si, Sj ) = 1

−N
∑3

α=1 μα, Si = Sj

0, d(Si, Sj ) > 1

(50)

To be consistent with existing notation in the quasispecies literature, we define 3 inde-
pendent variables, which are simply transformations of the composition variables, and which
are called ‘surplus’ variables in the literature

u1(Si) = 1 − 2

N
[d1(Si, Sw) + d3(Si, Sw)]

u2(Si) = 1 − 2

N
[d2(Si, Sw) + d3(Si, Sw)] (51)

u3(Si) = 1 − 2

N
[d1(Si, Sw) + d2(Si, Sw)]
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Notice that according to this definition, the maximum value of u = (u1 +u2 + u3)/3 = 1
is reached when d1 = d2 = d3 = 0, that is the sequence Si being identical to the wild type
Sw . The minimum value for the average base composition surplus is obtained when one of
the Hamming distance components, say di = N , while the others are null dj �=i = 0. Then,
d = di = N and u = −1/3.

The Kimura 3 ST mutation scheme result is obtained from the general (47) if the follow-
ing symmetries are assumed for the mutation rates

μ12 = μ21 = μ34 = μ43 ≡ μ1

μ13 = μ31 = μ24 = μ42 ≡ μ2 (52)

μ14 = μ41 = μ23 = μ32 ≡ μ3

We follow the quasispecies literature convention and define the 3 independent ‘ancestral
distribution’ coordinates ξα

c (the subscript c denoting the saddle-point limit), after (51)

ξ 1
c = 1 − 2(x1

c + x3
c )

ξ 2
c = 1 − 2(x2

c + x3
c ) (53)

ξ 3
c = 1 − 2(x1

c + x2
c )

The ancestral distribution variable ξ is defined as the steady state analog of the ‘surplus,’ but
for the time-reversed evolution process [23].

After some algebra, we obtain

fm = max
{ξ1

c ,ξ2
c ,ξ3

c }

{
f (ξ 1

c , ξ 2
c , ξ 3

c ) − (μ1 + μ2 + μ3)

+ μ1

2

[√
(1 + ξ 1

c + ξ 2
c + ξ 3

c )(1 − ξ 1
c − ξ 2

c + ξ 3
c )

+
√

(1 + ξ 1
c − ξ 2

c − ξ 3
c )(1 − ξ 1

c + ξ 2
c − ξ 3

c )
]

+ μ2

2

[√
(1 + ξ 1

c + ξ 2
c + ξ 3

c )(1 + ξ 1
c − ξ 2

c − ξ 3
c )

+
√

(1 − ξ 1
c + ξ 2

c − ξ 3
c )(1 − ξ 1

c − ξ 2
c + ξ 3

c )
]

+ μ3

2

[√
(1 + ξ 1

c + ξ 2
c + ξ 3

c )(1 − ξ 1
c + ξ 2

c − ξ 3
c )

+
√

(1 + ξ 1
c − ξ 2

c − ξ 3
c )(1 − ξ 1

c − ξ 2
c + ξ 3

c )
]}

(54)

From this general expression, the average composition ‘surplus’ �u = (u1, u2, u3) is obtained
by applying the self-consistent condition f (�u) = fm. This result is equivalent to that derived
by [17].
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2.7 Analytic Results for the Symmetric Mutational Scheme

For a symmetric mutational scheme, μ1 = μ2 = μ3 ≡ μ, we specialize the general (54) by
setting ξ 1

c = ξ 2
c = ξ 3

c ≡ ξc , and ui = u, and thus obtaining an expression for the mean fitness

fm = max
− 1

3 ≤ξc≤1

{
f (ξc) − 3

2
μ(1 + ξc) + 3

2
μ
√

(1 − ξc)(1 + 3ξc)

}
(55)

This result is equivalent to that derived by [17]. We remark that (55) represents an exact
analytical expression for the mean fitness of the population, for any arbitrary microscopic
fitness f (u), with the assumption of symmetric mutation rates μ1 = μ2 = μ3 = μ. From this
exact expression, the average composition u is obtained by applying the self-consistency
condition fm = f (u). In the following sections, we apply (55) to analyze in detail some
examples of microscopic fitness functions: The sharp peak landscape, a Fujiyama landscape,
a quadratic fitness landscape, and a quartic fitness landscape. We note that the h = 2 case
contains a symmetry in the mutation terms about ξ = 0. In the general h > 2, this symmetry
will be lost. As we will see, loss of this symmetry leads to a change in the order of the error
catastrophe phase transition.

2.7.1 The Sharp Peak Landscape

We shall first consider the sharp peak landscape, which is described by the function

f (u) = Aδu,1 (56)

That is, only sequences identical to the wild-type replicate with a rate A > 0. From (55), we
notice that this implies: ξc = 1, if A > 3μ, or ξc = 0 otherwise. Therefore, we obtain for the
mean replication rate

fm =
{

A − 3μ, A > 3μ

0, A < 3μ
(57)

The fraction of the population at the wild-type pw is obtained from the self-consistent con-
dition fm = pwA,

pw =
{

1 − 3μ

A
, A > 3μ

0, A < 3μ
(58)

There exists an error threshold in this case, which is given by the critical value Acrit = 3μ,
as shown in (57), (58) and displayed in Fig. 3. The phase transition is first order as a function
of A/μ.

One may compare this result with the error threshold observed in the binary alphabet
case, which is [19] Acrit = μ. This result is intuitive, because in the 4 letters alphabet,
there exist 3 mutation channels to escape from the wild type instead of just one as in the
binary alphabet, and therefore a stronger selection pressure is required to retain the wild-
type features.
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Fig. 3 Average composition u,
magnetization ξc and fraction of
the population at the wild-type
sequence pw , as a function of the
parameter A/μ, for the sharp
peak fitness

2.7.2 The Fujiyama Fitness Landscape

The Fujiyama landscape is obtained as a linear function of the composition

f [�u] = α1u1 + α2u2 + α3u3 (59)

We will present analytical results for the symmetric case αi ≡ α, μi ≡ μ. Thus, ξ 1
c = ξ 2

c =
ξ 3
c = ξc . Substituting in (55), we have

fm = max
− 1

3 ≤ξc≤1

{
3αξc − 3

2
μ(1 + ξc) + 3

2
μ
√

(1 − ξc)(1 + 3ξc)

}
(60)

We look for a maximum

∂fm

∂ξc

= 3α − 3

2
μ + 3

2
μ

2 − 6ξc

2
√

1 + 2ξc − 3ξ 2
c

= 0 (61)

From this equation, we obtain

ξc = 1

3

(
1 + 2α − μ√

α2 − αμ + μ2

)
(62)

To obtain the average base composition u, we apply the self-consistent condition fm =
f (u) = 3αu, to obtain

u = 1

3

(
1 − 2

μ

α
+ 2

α

√
α2 − μα + μ2

)
(63)

Clearly, no phase transition is observed in this fitness landscape, as 0 < u < 1 for 0 <

α < ∞. This result is in agreement with the analysis presented in [15], were a quantum
spin chain formulation was employed.
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2.7.3 Quadratic Fitness Landscape

The quadratic fitness landscape is given by the general quadratic form

f (�u) =
3∑

i=1

(
βi

2
u2

i + αiui

)
(64)

We will present the analytical solution for the symmetric case αi ≡ α, βi ≡ β , with the
symmetric mutation scheme μi ≡ μ. Under these conditions, we have ξ 1

c = ξ 2
c = ξ 3

c ≡ ξc ,
and from (55) we have for the mean fitness

fm = max
− 1

3 ≤ξc≤1

{
3

2
βξ 2

c + 3αξc − 3

2
μ(1 + ξc) + 3

2
μ
√

(1 − ξc)(1 + 3ξc)

}
(65)

The maximum is obtained from the equation

∂fm

∂ξc

= 3βξc + 3α − 3

2
μ + 3

2
μ

2 − 6ξc

2
√

1 + 2ξc − 3ξ 2
c

= 0 (66)

From (66), we obtain

βξc + α − μ

2
= μ

2

3ξc − 1√
1 + 2ξc − 3ξ 2

c

(67)

As shown in Appendix 2, this equation can be cast in the form of a quartic equation, whose
roots are the values of ξc . The average composition u is finally obtained through the self-
consistency equation

fm = f (u) = 3

2
βu2 + 3αu (68)

We find that the error threshold transition towards a selective phase for α = 0 is defined
by ξc > 0, u > 0, at β > 3/2μ. The value of u is continuous at the transition, as it is straight-
forward to check from (66) fm(ξc = 0) = fm(ξc = 2/3, β = 3μ/2) = 0, which implies after
(68) (for α = 0) that u = 0 when approaching the critical point β = 3μ/2 from both sides.
However, ξc jumps from 0 [for β → (3μ/2)−] to 2/3 [for β → (3μ/2)+] (Appendix 2).
To analyze the order of the transition, we expand (65) as a quadratic polynomial in ξc in a
neighborhood of the critical point β � 3μ/2,

fm(ξc) =
{ 3

2 (β − 3μ/2)ξ 2
c , β < 3μ/2

2
3 β − μ + (2β − 3μ)(ξc − 2

3 ) + ( 3
2β − 3μ)(ξc − 2

3 )2, β > 3μ/2
(69)

we find that the first derivative dfm/dβ[β → (3μ/2)−] = 0, while dfm/dβ[β → (3μ/2)+] =
2/3, and thus it has a discontinuous jump from 0 to 2/3. Therefore, the phase transition is
first order as a function of β/μ. We notice that the order of the phase transition, for a similar
quadratic fitness landscape, is found to be of second order for a binary alphabet [19].

When 0 ≤ α/β ≤ 1
3 (

√
4
3 − 1), as shown in Appendix 2, we find a finite jump in the

magnetization from ξc,+ to ξc,−, with ξc,± = 1/3(1 ±√
1 − 18α/β − 27(α/β)2). This result

is in agreement with [15], where an alternative method of quantum spin chains was applied
for the derivation. A complete analysis of the different possible cases other than this, is
presented in Appendix 2.
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Fig. 4 Average composition u

and magnetization ξc as a
function of the parameter β/μ,
for the quadratic fitness when
α = 0

2.8 Quartic Fitness Landscape

As a final example, we consider a quartic fitness landscape

f (�u) =
3∑

i=1

βi

4
u4

i (70)

As in the previous cases, we consider the symmetric mutation rates μi ≡ μ, βi ≡ β , and
hence ξc,i ≡ ξc . Considering this fitness function in the general equation (55), we have that
the mean fitness is given by the analytical expression

fm = max
{− 1

3 ≤ξc≤1}

{
3

4
βξ 4

c − 3

2
μ(1 + ξc) + 3

2
μ
√

(1 − ξc)(1 + 3ξc)

}
(71)

The average composition u is obtained by applying the self-consistent condition

f (u) = 3

4
βu4 = fm (72)

In Fig. 5, we present the values of u and ξc , as obtained from (71), (72), as a func-
tion of the parameter β/μ. A discontinuous jump in the bulk magnetization from ξc = 0 to
ξc = 0.971618 is observed at β/μ = 3.67653. By expanding (71) near the critical point, after
similar procedure as in the quadratic fitness case, we find a discontinuous jump in the deriv-
ative dfm/dβ , from 0 to 0.66841101. Therefore, the phase transition is first order in β/μ.
The average composition u, however, experiences a fast but smooth transition. This behavior
is much alike the one observed in the sharp peak fitness landscape, (57) and Fig. 3, except
for the fact that the average composition u is continuous at the transition. Indeed, from a
purely mathematical perspective, a fitness function following a power law fn(u) = kun, for
0 < u < 1, will satisfy the limit

lim
n→∞fn(u) = kδu,1 (73)

which is precisely the sharp peak landscape, (56).
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Fig. 5 Average composition u

and magnetization ξc as a
function of the parameter β/μ,
for the quartic fitness landscape

2.9 Symmetric Case, General h, with Application to the Amino Acid Alphabet h = 20

An alternative language to describe molecular evolution is in terms of mutation and selec-
tion acting over the translated protein sequence, which is drawn from an h = 20 amino acid
alphabet. For the parallel model, the time evolution of an infinite population of protein se-
quences is described by the system of differential equations (2), with h = 20. Thus, we are
lead to consider the h = 20 case. We first consider the symmetric case with general h.

For an alphabet of arbitrary size h, a symmetrical mutation scheme μαβ = μ, and a
symmetrical fitness function that leads to xα

c = xc , we define a magnetization coordinate
ξc = 1 − hxc , and (44) reduces to

fm = max
{−1/(h−1)≤ξc≤1}

{
f (ξc) + (h − 1)μ

[
2

h

√
(1 − ξc)(1 + (h − 1)ξc)

+ h − 2

h
(1 − ξc) − 1

]}
(74)

As an example of application of (74), we consider the sharp peak fitness landscape
f (ξc) = Aδξc,1. Then, from (74) we obtain the mean fitness

fm =
{

A − (h − 1)μ, A > (h − 1)μ

0, A ≤ (h − 1)μ
(75)

We obtain the fraction of sequences in the wild type, pw , by applying the self-consistency
condition fm = Apw , which yields

pw =
{

1 − (h−1)μ

A
, A > (h − 1)μ

0, A ≤ (h − 1)μ
(76)

This result is intuitive, since there exists h − 1 independent mutation channels for the se-
quence to escape from the wild type. Moreover, for a general alphabet of size h, a first order
phase transition occurs at the critical point Ah

crit = (h − 1)μ.
As a second example, we consider the quadratic fitness landscape for an alphabet of

size h, f (ξc) = (h − 1)βξ 2
c /2. For the quadratic fitness function we can work out the order
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of the phase transition for general h. We consider f (ξ) = (h − 1)βξ 2/2. There is a phase
transition at βcrit = 2μ(h − 1)/h. The magnetization jumps from ξc = 0 at β → β−

crit to
ξc = (h − 2)/(h − 1) at β → β+

crit . The first derivative at the critical point is:

dfm

dβ
=
{

0, β < 2μ(h − 1)/h

(h − 2)2/[2(h − 1)], β > 2μ(h − 1)/h
(77)

Thus, the jump in the first derivative is (h − 2)2/[2(h − 1)]. Thus, the transition is second
order for h = 2 and first order for h > 2.

3 The h-states Eigen Model

The Eigen model conceptually differs from the parallel or Kimura model because it is as-
sumed that mutations arise as a consequence of errors in the replication process. For an
alphabet of size h, the system of equations which describes the time evolution of the proba-
bilities pi , with 1 ≤ i ≤ hN , is

dpi

dt
=

N∑
j=1

[Bij rj − δijDj ]pj − pi

⎡
⎣ N∑

j=1

(rj − Dj)pj

⎤
⎦ (78)

Here, ri is the replication rate of sequence Si , and the components of the matrix

Bij = (1 − q)N−dij

(
q

h − 1

)dij

(79)

represent the transition rates from sequence Sj into Si , where 1−q is the probability to copy
a nucleotide without error, and q is the probability per site for a base substitution during the
replication process.

We consider a generalized version of this, by considering that the base substitution
probabilities are not necessarily identical nor symmetric. That is, for a base substitution
β → α, we consider a probability qαβ �= qβα . Correspondingly, we define h− 1 independent
base compositions 0 ≤ xα ≤ 1, which can also be interpreted as normalized Hamming dis-
tances with respect to the h-th reference species, xα = dα/N . For this generalized mutation
scheme, the transition rate matrix components are defined by

Bij = (1 − q)N(1−∑h−1
α=1 xα)

h∏
α �=β=1

(
qαβ

)Nxα

(80)

Here, q =∑h

α �=β=1 qαβ , and the xα are as in Sect. 2.1.

3.1 The h-states Eigen Model in Operator Form

By similar arguments as in the parallel model, we formulate a Hamiltonian operator for the
Eigen model

−Ĥ =
N∏

j=1

⎡
⎣(1 − q)�̂a†(j) · �̂a(j) +

h∑
α �=β=1

qαβ
�̂a†(j)τ αβ �̂a(j)

⎤
⎦
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× Nf

[
1

N

N∑
l=1

�̂a†(l)��̂a(l)

]
− Nd

[
1

N

N∑
l=1

�̂a†(l)��̂a(l)

]
(81)

Here, the matrices ταβ are defined as in the parallel model by (11) and in the matrix array
� = (	1,	2, . . . ,	h−1), the matrices 	α are defined as in (14). Let us define the coeffi-
cients μαβ = Nqαβ . The degradation function is given by Di = Nd(x1, x2, . . . , xh−1). Then,
we have for q � 1

−N ln(1 − q) � Nq = N

h∑
α �=β=1

qαβ =
h∑

α �=β=1

μαβ (82)

The Hamiltonian operator (81) is expressed, to O(1/N), by

−Ĥ = Ne
−∑h

α �=β=1 μαβ e
∑N

j=1[∑h
α �=β=1

μαβ
N

�̂a†(j)ταβ �̂a(j)]

× f

[
1

N

N∑
l=1

�̂a†(l)��̂a(l)

]
− Nd

[
1

N

N∑
l=1

�̂a†(l)��̂a(l)

]
(83)

To study the equilibrium properties of the system, as in the case of the parallel model,
we calculate the partition function by performing a Trotter factorization

Z = Tr e−Ĥ t P̂

=
∫ 2π

0

⎡
⎣ N∏

j=1

dλj

2π

⎤
⎦ e−iλj lim

M→∞

∫ ⎡
⎣ M∏

k=1

N∏
j=1

dh�z∗
k(j)dh�zk(j)

πh

⎤
⎦ e−S[�z∗,�z] (84)

Here,

e−S[�z∗,�z] =
M∏

k=1

〈{�zk}|e−εĤ |{�zk−1}〉 (85)

where the matrix elements in the coherent states basis are given by the expression

〈{�zk}|e−εĤ |{�zk−1}〉
= e

− 1
2
∑N

j=1(�z∗
k
(j)·�zk(j)−2�z∗

k
(j)·�zk−1(j)+�z∗

k−1(j)·�zk−1(j))

× exp

(
εNe

−∑h
α �=β=1 μαβ e

1
N

∑N
j=1 �z∗

k
(j)(

∑h
α �=β=1 μαβταβ )�zk−1(j)

× f

[
1

N

N∑
j=1

�z∗
k(j)��zk−1(j)

]
− εNd

[
1

N

N∑
j=1

�z∗
k(j)��zk−1(j)

])
(86)

Let us introduce the (h − 1)-component vector field �xk = (x1
k , x

2
k , . . . , x

h−1
k ), and an in-

tegral representation of the corresponding delta function

1 =
∫

D[�x]
M∏

k=1

δ(h−1)

⎡
⎣�xk − 1

N

N∑
j=1

�z∗
k(j)��zk−1(j)

⎤
⎦
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=
∫ [

M∏
k=1

h−1∏
α=1

iεNdx̄α
k dxα

k

2π

]
e

−εN
∑M

k=1
�̄xk ·�xk+ε

∑M
k=1

∑N
j=1 �z∗

k
(j) �̄xk ·��zk−1(j) (87)

Similarly, let us introduce a second set of fields ηαβ ,

1 =
∫

D[ηαβ ]
M∏

k=1

δ

⎡
⎣η

αβ

k − 1

N

N∑
j=1

�z∗
k(j)τ αβ�zk−1(j)

⎤
⎦

=
∫ [

M∏
k=1

iεNdη̄
αβ

k dη
αβ

k

2π

]

× e
−εN

∑M
k=1 η̄

αβ
k

η
αβ
k

+ε
∑M

k=1 η̄
αβ
k

∑N
j=1 �z∗

k
(j)ταβ �zk−1(j) (88)

Inserting both constraints (87) and (88) in the expression for the trace (84), we obtain

Z = lim
M→∞

∫
D[�x]D[�̄x]

∏
α �=β

D[ηαβ ]D[η̄αβ ]

× e
εN

∑M
k=1(−�̄xk ·�xk−∑h

α �=β=1 η̄
αβ
k

η
αβ
k

+e

∑h
α �=β=1 μαβ (ηαβ−1)

f [�xk ]−d[�xk ])

×
∫

D[�z∗]D[�z]D[λ]
N∏

j=1

e−iλj eε
∑M

k,l=1 �z∗
k
(j)Skl�zl (j)

∣∣∣∣{�z0}={eiλj �zM }
(89)

After performing the Gaussian integral over the fields �z∗, �z, we obtain

Z = lim
M→∞

∫
D[�x]D[�̄x]

∏
α �=β

D[ηαβ ]D[η̄αβ ]

× e
εN

∑M
k=1(−�̄xk ·�xk−∑h

α �=β=1 η̄
αβ
k

η
αβ
k

+e
−∑h

α �=β=1 μαβ (1−η
αβ
k

)
f [�xk ]−d[�xk ])

× D[λ]
N∏

j=1

e−iλj [detS(j)]−1 (90)

The matrix S(j) has the structure

S(j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . −e−iλj A1(j)

−A2(j) I 0 . . . 0

0 −A3(j) I . . . 0

. . .

0 . . . −AM(j) I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(91)

where Ak(j) = I + ε[∑h

α �=β=1 μαβη̄
αβ

k + �̄xk · �]. We obtain

detS(j) = det

[
I − eiλj

M∏
k=1

Ak(j)

]
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= det
[
I − eiλj T̂ e

ε
∑M

k=1[∑h
α �=β=1 η̄

αβ
k

ταβ+�̄xk ·�]]

= eTr ln[I−e
iλj T̂ e

ε
∑M

k=1[∑h
α �=β=1 η̄

αβ
k

ταβ+�̄xk ·�]] (92)

Substituting this last expression into the functional integral (90), and then performing the
integrals over the λ fields, we obtain

Z = lim
M→∞

∫
D[�̄x]D[�x]

h∏
α �=β=1

D[η̄αβ ]D[ηαβ ]

× e
εN

∑M
k=1(−�̄xk ·�xk−∑h

α �=β=1 η̄
αβ
k

η
αβ
k

+e

∑h
α �=β=1 μαβ (ηαβ−1)

f [�xk ]−d[�xk ])
N∏

j=1

Q (93)

Here,

Q = lim
M→∞

Tr T̂
M∏

k=1

[
I + ε

(
h∑

α �=β=1

η̄
αβ

k τ αβ + �̄xk · �
)]

= lim
M→∞

Tr T̂ e
ε
∑M

k=1[∑h
α �=β=1 η̄

αβ
k

ταβ+�̄xk ·�]

= Tr T̂ e
∫ t

0 dt ′[∑h
α �=β=1 η̄αβ (t ′)ταβ+�̄x(t ′)·�] (94)

After taking the limit M → ∞, we obtain

Z =
∫

D[�̄x]D[�x]
∏
α �=β

D[η̄αβ ]D[ηαβ ]e−S[ �̄x,�x,{η̄αβ },{ηαβ }] (95)

Here,

S[�̄x, �x, {η̄αβ}, {ηαβ}]

= −N

∫ t

0
dt ′{−�̄x(t ′) · �x(t ′) −

h∑
α �=β=1

η̄αβ(t ′)ηαβ(t ′)

+ e
∑h

α �=β=1 μαβ (ηαβ (t ′)−1)
f [�x(t ′)] − d[�x(t ′)]} − N lnQ (96)

where

Q = Tr T̂ e
∫ t

0 dt ′[∑h
α �=β=1 η̄αβ (t ′)ταβ+∑h−1

α=1 x̄α(t ′)	α ] (97)

With this last simplification, the effective action becomes

S[�̄x, �x, {η̄αβ}, {ηαβ}]

= −N

∫ t

0
dt ′(−�̄x(t ′) · �x(t ′) −

h∑
α �=β=1

η̄αβ(t ′)ηαβ(t ′)

+ e
∑h

α �=β=1 μαβ(ηαβ−1)
f [�x(t ′)] − d[�x(t ′)]) − N lnQ (98)
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3.2 The Large N Limit of the h-state Eigen Model is a Saddle Point

By assuming that the sequence length N is very large, N → ∞, we can evaluate the func-
tional integral (95) by a saddle point method. Considering the action defined in (98), we
have

δS

δxα

∣∣∣∣ �̄xc,�xc,{η̄αβ
c },{ηαβ

c }
=N

(
x̄α

c − e
∑h

γ �=ρ=1 μγρ(η
γρ
c −1) ∂f [�xc]

∂xα

∣∣∣∣
c

+ ∂d[�xc]
∂xα

∣∣∣∣
c

)
= 0

δS

δηαβ

∣∣∣∣ �̄xc,�xc,{η̄αβ
c },{ηαβ

c }
=N

(
η̄αβ

c − μαβe
∑h

γ �=ρ=1 μγρ(η
γρ
c −1)

f [�xc]
)

= 0

δS

δx̄α

∣∣∣∣ �̄xc,�xc,{η̄αβ
c },{ηαβ

c }
=N

(
xα

c − 1

Q

δQ

δx̄α

∣∣∣∣
c

)
= 0

δS

δη̄αβ

∣∣∣∣ �̄xc,�xc,{η̄αβ
c },{ηαβ

c }
=N

(
ηαβ

c − 1

Q

δQ

δη̄αβ

∣∣∣∣
c

)
= 0

(99)

We have therefore the system of equations

x̄α
c = e

∑h
γ �=ρ=1 μγρ(η

γρ
c −1) ∂f [�xc]

∂xα

∣∣∣∣
c

− ∂d[�xc]
∂xα

∣∣∣∣
c

(100)

η̄αβ
c = μαβe

∑h
γ �=ρ=1 μγρ(η

γρ
c −1)

f [�xc] (101)

xα
c = 〈	α〉 (102)

ηαβ
c = 〈ταβ〉 (103)

where we defined

〈(·)〉 = Tr (·)et[∑h
α �=β=1 η̄

αβ
c ταβ+∑h−1

α=1 x̄α
c 	α ]

Tr e
t[∑h

α �=β=1 η̄
αβ
c ταβ+∑h−1

α=1 x̄α
c 	α ]

(104)

After the saddle-point analysis, we obtain an exact analytical expression for the mean
fitness fm of the population, in the limit of very large sequences N → ∞, for an arbitrary
microscopic fitness function f (�x) and degradation rate d(�x)

fm = lim
N,t→∞

−Sc

Nt

= max
{�xc �̄xc,{ηαβ

c },{η̄αβ
c }}

[
e
∑h

α �=β=1 μαβ(η
αβ
c −1)

f (�xc) − d(�xc)

− �̄xc · �xc −
h∑

α �=β=1

ηαβ
c η̄αβ

c + λmax

]
(105)

As shown in Appendix 3, the ηαβ can be eliminated in terms of the compositions, to
obtain the final expression

fm = max
{x1

c ,x2
c ,...,xh−1

c }

{
f (x1

c , x
2
c , . . . , x

h−1
c )e

∑h−1
α �=β=1 μαβ [

√
xα
c x

β
c −xα

c ]



Solution of the Crow-Kimura and Eigen Models for Alphabets 451

× e
∑h−1

α=1 μαh[
√

xα
c (1−∑h−1

γ=1 x
γ
c )−xα

c ]

× e
∑h−1

β=1 μhβ [
√

(1−∑h−1
γ=1 x

γ
c )x

β
c +∑h−1

γ=1 x
γ
c −1] − d(x1

c , x
2
c , . . . , x

h−1
c )

}
(106)

Here, the compositions 0 ≤ xα
c ≤ 1 are defined within the simplex

∑h−1
α=1 xα

c ≤ 1. We note
that the mutation terms in (106) are the exponential of the mutation terms in (44), which is
a result of the mutation terms in the Eigen Hamiltonian, (83), being the exponential of those
in the parallel Hamiltonian, (17).

3.3 The Purine/Pyrimidine Alphabet h = 2

As an application of our general solution (106), we first consider the purine/pyrimidine
alphabet with h = 2. The maximum principle for this binary alphabet can be derived from
(106) by assuming a symmetric mutation rate μ12 = μ21 ≡ μ, and by noticing that a single
composition (or normalized Hamming distance) x1

c ≡ xc is required in this case,

f (2)
m = max

0≤xc≤1

{
eμ[2√

xc(1−xc)−1] − d(xc)
}

(107)

It is customary to use in this case a magnetization coordinate, defined as ξc = 1 − 2xc ,
and hence (107) becomes

f (2)
m = max

{−1≤ξc≤1}

{
eμ[

√
1−ξ2

c −1]f (ξc) − d(ξc)

}
(108)

Equation (108) is a well known result [14, 19], and a special case of our general result
(106).

3.4 The Nucleic Acid Alphabet h = 4

For a general, non-symmetric mutation scheme as in Fig. 1, by considering h = 4 in our
general result (106) we obtain

fm = max
{x1

c ,x2
c ,x3

c }

{
f (x1

c , x
2
c , x

3
c )e

∑3
α �=β=1 μαβ [

√
xα
c x

β
c −xα

c ]
e
∑3

α=1 μα4[
√

xα
c (1−∑3

γ=1 x
γ
c )−xα

c ]

× e
∑3

β=1 μ4β [
√

(1−∑3
γ=1 x

γ
c )x

β
c +∑3

γ=1 x
γ
c −1] − d(x1

c , x
2
c , x

3
c )

}
(109)

Here, the compositions xα
c are defined within the simplex x1

c + x2
c + x3

c ≤ 1.
An interesting reduction of this general model is provided by the Kimura 3 ST muta-

tion scheme, introduced in Sect. 2.6, and represented in Fig. 2. We obtain the solution for
the Kimura 3 ST mutation scheme by assuming the following symmetries in the mutation
coefficients

μ12 = μ21 = μ34 = μ43 ≡ μ1

μ13 = μ31 = μ24 = μ42 ≡ μ2 (110)

μ14 = μ41 = μ23 = μ32 ≡ μ3
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along with the magnetization coordinates ξα
c defined in agreement with (110),

ξ 1
c = 1 − 2(x1

c + x3
c )

ξ 2
c = 1 − 2(x2

c + x3
c ) (111)

ξ 3
c = 1 − 2(x1

c + x2
c )

With these assumptions, after some algebra, (106) reduces to the expression for the Kimura
3ST scheme,

fm = max
{ξ1

c ,ξ2
c ,ξ3

c }

{
eμ1( 1

2

√
(1+ξ1

c +ξ2
c +ξ3

c )(1−ξ1
c −ξ2

c +ξ3
c )+ 1

2

√
(1+ξ1

c −ξ2
c −ξ3

c )(1−ξ1
c +ξ2

c −ξ3
c )−1)

× eμ2( 1
2

√
(1+ξ1

c +ξ2
c +ξ3

c )(1+ξ1
c −ξ2

c −ξ3
c ))+ 1

2

√
(1−ξ1

c +ξ2
c −ξ3

c )(1−ξ1
c −ξ2

c +ξ3
c )−1)

× eμ3( 1
2

√
(1+ξ1

c +ξ2
c +ξ3

c )(1−ξ1
c +ξ2

c −ξ3
c )+ 1

2

√
(1+ξ1

c −ξ2
c −ξ3

c )(1−ξ1
c −ξ2

c +ξ3
c )−1)

× f (ξ 1
c , ξ 2

c , ξ 3
c ) − d(ξ 1

c , ξ 2
c , ξ 3

c )

}
(112)

3.5 Analytical Results for the Symmetric Mutation Scheme

If the mutation rates are identical μ1 = μ2 = μ3 = μ, then we have the symmetric case
ξ 1
c = ξ 2

c = ξ 3
c ≡ ξc , and after (112) we obtain

fm = max
− 1

3 ≤ξc≤1

{
e

3
2 μ[−1−ξc+√

(1+3ξc)(1−ξc)]f [ξc] − d[ξc]
}

(113)

3.5.1 The Sharp Peak Fitness Landscape

Let us first consider the sharp peak landscape f (u) = (A − A0)δu,1 + A0, with A > A0.
That is, the replication rate is f (u = 1) = A for sequences identical to the wild type, and
f (u �= 1) = A0, for all other sequences. With zero degradation rate, d = 0, we notice that
this result implies: ξc = 1 if A > A0e

3μ, or ξc = 0 otherwise. Therefore, we obtain the mean
replication rate

fm =
{

e−3μA, A > A0e
3μ

A0, A < A0e
3μ

(114)

The system experiences a phase transition which is first order in A. The steady-state proba-
bility for the wild-type is obtained from the self-consistent condition: fm = Apw + A0(1 −
pw),

pw =
{

e−3μA−A0
A−A0

, A > A0e
3μ

0, A < A0e
3μ

(115)

Notice that the error threshold is reached at the critical value Acrit = A0e
3μ, as follows from

(114), (115) and as displayed in Fig. 6. We notice that this result differs from the analytical
value obtained for the binary alphabet [19], A

(2)
crit = A0e

μ. The additional factor of three
which is explicit in the exponent is clearly a consequence of the existence of three mutation
channels into which evolving sequences can escape from the wild-type. This effect, which
is purely entropic- and not fitness-like, is an explicit consequence of the larger alphabet size.
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Fig. 6 The average composition
u and magnetization ξc are
represented as a function of the
parameter A/A0, for the sharp
peak landscape. The mutation
rate was set to μ = 1.0. Also
shown (inset) is the fraction of
the population located at the
peak, pw

3.5.2 The Fujiyama Fitness Landscape

We will consider the Fujiyama fitness landscape, which is a linear function of the composi-
tion

f (�u) =
3∑

i=1

(αiui) + α0 (116)

For the symmetric case, αi = α, μi = μ. Therefore, we have ξ 1
c = ξ 2

c = ξ 3
c ≡ ξc . The mean

fitness, in the absence of degradation, from (113) becomes

fm = max
− 1

3 ≤ξc≤1

{
(3αξc + α0)e

3
2 μ[−1−ξc+√

(1+3ξc)(1−ξc)]
}

(117)

By maximizing with respect to ξc , ∂fm

∂ξc
= 0, we obtain the nonlinear equation

α − μ

2
α0 − 3

2
μαξc = μ

2

(3αξc + α0)(3ξc − 1)√
(1 + 3ξc)(1 − ξc)

(118)

No error threshold is observed for this fitness landscape, except for the trivial limit α → 0,
α0 ≥ 0. The average surplus u is obtained by the self-consistent equation

fm = 3αu + α0 (119)

3.6 The Quadratic Fitness Landscape

Next we consider the quadratic fitness landscape

f (�u) =
N∑

i=1

(
βi

2
u2

i + αiui

)
+ 1 (120)

For the symmetric case, βi = β , αi = α, μi = μ, we have ξ i
c = ξc and ξ̄ i

c = ξ̄c . Thus, the
mean fitness, for a null degradation rate, after (113) is

fm = max
− 1

3 ≤ξc≤1

{(
3

2
βξ 2

c + 3αξc + 1

)
e

3
2 μ[−1−ξc+√

(1+3ξc)(1−ξc)]
}

(121)
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Fig. 7 The average composition
u and magnetization ξc are
represented as a function of the
parameter β/μ for the quadratic
fitness, when α = 0

We maximize with respect to ξc , ∂fm

∂ξc
= 0, to obtain

βξc + α = μ

2

(
3

2
βξ 2

c + 3αξc + 1

)[
1 + 3ξc − 1√

(1 + 3ξc)(1 − ξc)

]
(122)

The average base composition u is obtained from the self-consistent condition

fm = f (u) = 3

2
βu2 + 3αu + 1 (123)

The selected phase, ξc > 0, u > 0, occurs for β > 1.8096μ when α = 0. The value of
u is continuous at the transition, as it can checked from (121) that fm(ξc = 0) = fm(ξc =
0.2289, β = 1.8096,μ = 1) = 1, which implies after (123) (for α = 0) that u = 0 when
approaching the critical point β = 1.8066μ from both sides. However, ξc jumps from 0 (for
β → 1.8066μ−) to 0.2289 (for β → 1.8066μ+). By expanding (121) near the critical point,
after a similar procedure as in (69) for the parallel model, we find a discontinuous jump in
dfm/dβ from 0 to 0.06883. Therefore, the phase transition is of first order in β . A graphical
representation is displayed in Fig. 7.

3.7 The Quartic Fitness Landscape

As a final example, we consider the quartic fitness landscape,

f (�u) =
3∑

i=1

βi

4
u4

i + 1 (124)

We further consider the symmetric case μi ≡ μ, βi ≡ β , and hence ξ i
c ≡ ξc . From the general

expression (113), we obtain an analytical expression for the mean fitness

fm = max
{− 1

3 ≤ξc≤1}

{(
3

4
βξ 4

c + 1

)
e

3
2 μ[−1−ξc+√

(1+3ξc)(1−ξc)]
}

(125)

The average composition of the population u is obtained from the self-consistent condition

f (u) = 3

4
βu4 + 1 = fm (126)
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Fig. 8 The average composition
u and magnetization ξc are
represented as a function of the
parameter β/μ for the quartic
fitness landscape

In Fig. 8, we present the values of u and ξc , as obtained from (125), (126), as a function
of the parameter β/μ. We notice that a discontinuous jump in the bulk magnetization from
ξc = 0 to ξc = 0.779856 is observed at β/μ = 10.776165. By expanding (125) near the
critical point, we find a discontinuous jump in dfm/dβ , from 0 to 0.066213. Therefore, the
phase transition is of first order in β . The average composition shows a fast but continuous
transition. This behavior is much like the one observed in the sharp peak fitness landscape,
(114), and in the corresponding example for the parallel model.

3.8 Symmetric Case, General h, with Application to the Amino Acid Alphabet h = 20

We consider the case of the amino acid alphabet, which is derived from our general solu-
tion (106) by setting h = 20. In particular, when a symmetric mutation scheme is assumed
μαβ = μ, for all α,β , and xα

c = xc . We first consider the symmetric case for general h.
For an alphabet of size h, we define a magnetization coordinate ξc = 1 − hxc , and obtain

that (106) reduces to

fm = max
{−1/(h−1)≤ξc≤1}

{
f (ξc)e

(h−1)μ[ 2
h

√
(1−ξc)(1+(h−1)ξc)+ h−2

h
(1−ξc)−1] − d(ξc)

}
(127)

As an example of application of (127), we consider the sharp peak fitness landscape
f (ξc) = (A − A0)δξc,1 + A0, and zero degradation function d(ξc) = 0. Then, from (127) we
obtain the mean fitness

fm =
{

e−(h−1)μA, A > A0e
(h−1)μ

A0, A ≤ A0e
(h−1)μ

(128)

The system experiences a first order phase transition at Acrit = A0e
(h−1)μ. The steady-

state probability for the wild-type is obtained from the self-consistency condition: fm =
Apw + A0(1 − pw),

pw =
{

Ae−(h−1)μ−A0
A−A0

, A > A0e
(h−1)μ

0, A ≤ A0e
(h−1)μ

(129)

The factor (h − 1)μ in the exponential is intuitive, since there exists h − 1 independent
mutation channels into which evolving sequences can escape from the wild-type.
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As a second example, we consider the quadratic fitness landscape f (ξc) = (h −
1)βξ 2

c /2 + 1 for an alphabet of size h. We consider the case of the amino acid alphabet,
with h = 20. We set μ = 1. By a similar analysis as in the parallel model case, we find
a phase transition at the critical point β = 7.483μ. The magnetization parameter ξc has a
finite jump from ξc = 0 (for β → 7.483μ−) to ξc = 0.0827 (for β → 7.483μ+). The mean
fitness is continuous at the transition, since fm(β → 7.483μ+) = fm(β → 7.483μ−) = 1,
which implies that the observable u = 0 at the critical point. We observe that the first
derivative has a finite jump at the critical point, from dfm/dβ(β → 7.483μ−) = 0, to
dfm/dβ(β → 7.483μ+) = 0.0437, and therefore the phase transition is of first order. A sim-
ilar analysis shows that the transition is first order for h = 3 as well. As with the parallel
model, we find that the transition for the quadratic fitness function is second order for h = 2
and first order for h > 2.

4 Conclusion

Using the quantum spin chain approach, the 2-state, purine/pyrimidine assumption for quasi-
species theory has been lifted to arbitrary alphabet sizes h. We have here expressed the
general result for the fitness of the evolved population as a maximization principle. We have
derived the solution for a general fitness function using the Schwinger spin coherent states
approach. We have presented analytic results for the sharp peak, as well as linear, quadratic,
and quartic fitness functions. For the Kimura 3 ST mutation scheme, we have presented an
explicit solution for a general fitness function, expressed as a maximization principle.

We have also derived the general solution to the Eigen model of mutation and selection
for arbitrary alphabet size and for a general mutation scheme. We have presented analytic
results for the sharp peak, linear, quadratic, and quartic fitness functions.

These results bring quasi-species theory closer to the evolutionary dynamics that occurs
at the genetic level.
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Appendix 1

In what follows, we will need to apply Euler’s theorem and three properties of the maximum
eigenvalue λmax of the matrix M defined by (43).

A.1 Euler’s Theorem for Homogeneous Functions

A.1.1 Definition 1: Homogeneous Function of Degree k

A function f (x1, . . . , xn) of n variables is homogeneous of degree k if, for all α > 0,

f (αx1, αx2, . . . , αxn) = αkf (x1, x2, . . . , xn) (130)
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A.1.2 Euler’s Theorem

A differentiable function f (x1, . . . , xn) of n variables is homogeneous of degree k if and
only if

n∑
i=1

xi

∂

∂xi

f (x1, . . . , xn) = kf (x1, . . . , xn) (131)

The theorem and its proof is presented in most textbooks of mathematical analysis [24].

A.2 Property I

The maximum eigenvalue λmax of the matrix M defined by (43) is a homogeneous function
of degree k = 1 in the vector (x̄1

c , x̄
2
c , . . . , x̄

h−1
c , {μαβ}).

The proof of this proposition follows directly from Definition 1. Notice that after (43),

M({x̄α
c }, {μαβ}) =

h∑
α �=β=1

μαβταβ +
h−1∑
α=1

x̄α
c 	α (132)

Since M is a linear function of the vector (x̄1
c , . . . , x̄

h−1
c ,μαβ)

M(αx̄1
c , αx̄2

c , . . . , αx̄h−1
c , αμ12, αμ21, . . .) = αM(x̄1

c , x̄
2
c , . . . , x̄

h−1
c ,μ12,μ21, . . .) (133)

Therefore, the maximum eigenvalue, as obtained from the long-time limit of the trace,

λmax(αx̄1
c , αx̄2

c , . . . , αx̄h−1
c , αμ12, αμ21, . . .)

= lim
t→∞

1

t
ln

[
Tr etM(αx̄1

c ,αx̄2
c ,...,αx̄h−1

c ,αμ12,αμ21,...)

]

= lim
t→∞

1

t
ln

[
Tr etαM(x̄1

c ,x̄2
c ,...,x̄h−1

c ,μ12,μ21,...)

]

= αλmax(x̄
1
c , x̄

2
c , . . . , x̄

h−1
c ,μ12,μ21, . . .) (134)

is also a homogeneous function of degree k = 1, after Definition 1.

A.3 Property II

λmax satisfies the identity

λmax =
h−1∑
α=1

x̄α
c

∂λmax

∂x̄α
c

+
h∑

α �=β=1

μαβ

∂λmax

∂μαβ

(135)

The proof follows directly by application of Euler’s theorem, for a homogeneous function
of degree k = 1.

Notice that, after the saddle-point (37)–(40), we have the following identities

xα
c = 〈	α〉 = lim

t→∞
Tr[	αetM]

Tr etM
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= lim
t→∞

∂

∂x̄α
c

ln[Tr etM]
t

= ∂

∂x̄α
c

λmax (136)

〈ταβ〉 = ∂

∂μαβ

λmax (137)

Substituting (136)–(137) into (135), we obtain the identity

λmax −
h−1∑
α=1

x̄α
c xα

c =
h∑

α �=β=1

μαβ〈ταβ〉 (138)

After (138), (41) becomes

fm = max
{x̄α

c },{μαβ }

[
f ({xα

c }) −
h∑

α �=β=1

μαβ(1 − 〈ταβ〉)
]

(139)

A.4 Property III

The ‘average’ 〈A〉 of an arbitrary h × h matrix A, satisfies the identity

〈A〉 = lim
t→∞

Tr[A etM]
Tr etM

= �yT
maxA�ymax (140)

with �ymax the eigenvector corresponding to the maximum eigenvalue λmax of the matrix M
in (132).

The proof follows by considering the unitary h×h matrix P = [�y1, �y2, �y3, . . . , �yh], P−1 =
PT whose columns are formed by the h orthogonal eigenvectors �yα of M which satisfy

M�yα =λα �yα 1 ≤ α ≤ h

�yα · �yβ = δαβ

(141)

From elementary linear algebra, the matrix P induces a similarity transformation which
diagonalizes M, that is PMP−1 = diag(λ1, λ2, . . . , λh) ≡ D. Hence, it also diagonalizes the
exponential of M,

PetMP−1 = P
(

I + tM + t2

2!MM + · · ·
)

P−1

= I + tPMP−1 + t2

2!PMP−1PMP−1 + · · ·

= I + tD + t2

2!D2 + · · · = etD (142)

The ‘average’ of an arbitrary h × h matrix A, defined by (140), is calculated as

〈A〉 = lim
t→∞

Tr[A etM]
Tr etM

= lim
t→∞

Tr[PAP−1PetMP−1]
Tr[PetMP−1]

= lim
t→∞

Tr[PAP−1etD]
Tr etD

= lim
t→∞

∑h

i=1 �yT
i A�yie

tλi∑h

j=1 etλj
= �yT

maxA�ymax (143)



Solution of the Crow-Kimura and Eigen Models for Alphabets 459

which proves the Property III.
We can express the eigenvector �ymax = (y1, y2, . . . , yh)T in terms of the fields xα

c , by
combining the result in Property III, with the saddle-point equations (136), (137), as follows

xα
c = 〈	α〉 = �yT

max	
α �ymax = (yα)2 (144)

These equations are inverted to obtain

yα =
⎧⎨
⎩

√
xα

c , 1 ≤ α ≤ h − 1√
1 −∑h−1

γ=1 x
γ
c , α = h

(145)

Equipped with this result, we can now calculate the ‘averages’ 〈ταβ〉 in (139),

〈ταβ〉 = �yT
maxτ

αβ �ymax = yαyβ +
∑
γ �=α

(yγ )2 (146)

Substituting (145) into (146), we obtain the result

〈ταβ〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
xα

c x
β
c + 1 − xα

c , α �= β �= h√
xα

c

(
1 −∑h−1

γ=1 x
γ
c

)+ 1 − xα
c , β = h, α �= h√(

1 −∑h−1
γ=1 x

γ
c

)
x

β
c +∑h−1

γ=1 x
γ
c , α = h, β �= h

(147)

Substituting (147) into (139), we obtain the final solution for the mean fitness of the
parallel model in an alphabet of size h, with an arbitrary mutation scheme,

f (h)
m = max

{x1
c ,x2

c ,...,xh−1
c }

{
f (x1

c , x
2
c , . . . , x

h−1
c ) +

h−1∑
α �=β=1

μαβ

[√
xα

c x
β
c − xα

c

]

+
h−1∑
α=1

μαh

[√√√√xα
c

(
1 −

h−1∑
γ=1

x
γ
c

)
− xα

c

]

+
h−1∑
β=1

μhβ

[√√√√(
1 −

h−1∑
γ=1

x
γ
c

)
x

β
c +

h−1∑
γ=1

xγ
c − 1

]}
(148)

Appendix 2

By performing elementary algebraic manipulations (67)

3βξc + 3α − 3

2
μ + 3

2

2 − 6ξc

2
√

1 + 2ξc − 3ξ 2
c

= 0

can be cast into the standard form of a quartic equation

Aξ 4
c + Bξ 3

c + Cξ 2
c + Dξc + E = 0 (149)
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where, by defining μ̃ ≡ μ/β and α̃ ≡ α/β , the coefficients correspond to

A = 3

B = 6α̃ − 3μ̃ − 2
(150)

C = 3μ̃2 − 3α̃μ̃ + 3α̃2 + 2μ̃ − 4α̃ − 1

D = −2α̃ − 2α̃2 + μ̃ + 2α̃μ̃ − 2μ̃2 (151)

E = −α̃2 + α̃μ̃

We remark that this quartic equation introduces additional, unphysical solutions to the orig-
inal (67). However, discarding these unphysical solutions whenever appropriate, the quartic
(149) allows us to obtain explicit analytical expressions for ξc in the entire region of para-
meters. Following Ferrari’s method [25], we define the parameters

a1 = −3B2

8A2
+ C

A
= −1

2
− α̃

3
− α̃2

2
+ μ̃

6
+ α̃μ̃

2
+ 5μ̃2

8
(152)

a2 = B3

8A3
− BC

2A2
+ D

A
= − 4

27
− 4α̃

9
+ 2μ̃

9
− μ̃2

4
− 3α̃μ̃2

4
+ 3μ̃3

8
(153)

a3 = − 3B4

256A4
+ CB2

16A3
− BD

4A2
+ E

A

= − 5

432
− 7α̃

108
− 5α̃2

72
+ α̃3

12
+ α̃4

16
+ 7μ̃

216
+ 5α̃μ̃

72
− α̃2μ̃

8
− α̃3μ̃

8

+ μ̃2

288
+ 3α̃μ̃2

16
+ 9α̃2μ̃2

32
− 7μ̃3

96
− 7α̃μ̃3

32
+ 13μ̃4

256
(154)

and solve the depressed quartic equation in the auxiliary variable z = ξc + B/4A,

z4 + a1z
2 + a2z + a3 = 0 (155)

We analyze the different cases in the parameter space that defines the possible solutions
of this equation.

Case 1: a2 = 0. This situation arises at the critical value

μ̃(1)
c = 2

3
+ 2α̃ (156)

We obtain four possible roots, according to the general formula

ξc = − B

4A
±

√√√√−a1 ±
√

a2
1 − 4a3

2

= 1

6

(
2 ± √

2
√

1 − 9α̃(2 + 3α̃) ± |1 − 9α̃(2 + 3α)|
)

(157)

Depending on the sign of the term in the square root, we have the following solutions



Solution of the Crow-Kimura and Eigen Models for Alphabets 461

(i) If 1 − 18α̃ − 27α̃2 > 0. This situation occurs when − 1
3 ≤ α̃ ≤ 1

3 (

√
4
3 − 1), and the

solution is

ξc,± = 1

3
(1 ±

√
1 − 18α̃ − 27α̃2), ξc = 1

3
(158)

(ii) If 1 − 18α̃ − 27α̃2 ≤ 0. This situation occurs when α̃ > 1
3 (

√
4
3 − 1).

ξc = 1

3
(159)

We shall consider α̃ ≥ 0 in the region of physically meaningful parameters. When α̃ = 0,
a non-selective phase is obtained, from (158), if β < 3

2 μ. At β = 3
2μ, for α = 0, a finite

‘jump’ in the value of ξc from 0 to 2/3 defines a phase transition, where the value of u varies
continuously from 0 to a positive value.

When 0 ≤ α̃ ≤ 1
3 (

√
4
3 − 1), a finite jump in the bulk magnetization from ξc,− to ξc,+ is

observed. This result is in agreement with [15].
Case 2: a3 = 0, a2 �= 0. This situation occurs at the critical values

μ̃(2)
c = 2

39

(
1 + 3α̃ + 2

√
49 − 18α̃ − 27α̃2

)
, 0 ≤ α̃ ≤ 1.054444 (160)

μ̃(3)
c = 2

39

(
1 + 3α̃ − 2

√
49 − 18α̃ − 27α̃2

)
, 1 ≤ α̃ ≤ 1.054444 (161)

In this case, the quartic equation in z factorizes,

z(z3 + a1z + a2) = 0 (162)

There is a solution z = 0 for (162). This is however not a solution of (67), but an artifact
of introducing the algebraic transformation into the fourth order polynomial (149).

The solutions corresponding to the remaining cubic equation in (162) are analyzed as
follows. Let us define the parameters,

s1 =
[
−a2

2
+
(

a3
1

27
+ a2

2

4

)1/2
]1/3

s2 =
[
−a2

2
−
(

a3
1

27
+ a2

2

4

)1/2
]1/3

(163)

Then, we have the following cases,
Case 2.a: Consider μ̃ = μ̃(2)

c , defined by (160). This situation is possible when 0 ≤ α̃ ≤
1.054444. Within this range of values for α̃, the parameter

a3
1

27 + a2
2
4 ≥ 0. Then, we find a

single real solution

ξc = 1

39

(
7 − 18α̃ +

√
49 − 18α̃ − 27α̃2

)
+ s1 + s2 (164)

Case 2.b: Consider μ̃ = μ̃(3)
c , defined by (161). This situation is possible when 1 ≤ α̃ ≤

1.054444. Within this range of values for α̃, the parameter
a3

1
27 + a2

2
4 ≥ 0. Then, we find a
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single real solution

ξc = 1

39

(
7 − 18α̃ −

√
49 − 18α̃ − 27α̃2

)
+ s1 + s2 (165)

Case 3: a3 �= 0, a2 �= 0. In this case, we consider again the general quartic (149). Follow-
ing Ferrari’s method [25], we find 4 possible roots

ξc,(1,2) = − B

4A
+ 1

2
P ± 1

2
Q

ξc,(3,4) = − B

4A
− 1

2
P ± 1

2
U

(166)

Here, we defined

P =
√

B2

4A2
− C

A
+ y1 (167)

Q =

⎧⎪⎪⎨
⎪⎪⎩

√
3
4

B2

A2 − P 2 − 2 C
A

+ 1
4 (4 BC

A2 − 8 D
A

− B3

A3 )P −1, P �= 0√
3
4

B2

A2 − 2 C
A

+ 2
√

y2
1 − 4 E

A
, P = 0

(168)

U =

⎧⎪⎪⎨
⎪⎪⎩

√
3
4

B2

A2 − P 2 − 2 C
A

− 1
4 (4 BC

A2 − 8 D
A

− B3

A3 )P −1, P �= 0√
3
4

B2

A2 − 2 C
A

− 2
√

y2
1 − 4 E

A
, P = 0

(169)

From (166), the largest real root corresponds to the physical solution of (67).
The parameter y1 in (167–169) is obtained as the real root of the auxiliary cubic equation

y3 + γ2y
2 + γ1y + γ0 = 0 (170)

Here, we defined the parameters

γ2 = −C

A

γ1 = BD

A2
− 4

E

A
(171)

γ0 = 4
CE

A2
− D2

A2
− B2E

A3

Let us define

q = γ1

3
− γ 2

2

9

r = 1

6
(γ1γ2 − 3γ0) − γ 3

2

27
(172)

� = q3 + r2

We have three possible cases: � > 0, � = 0, and � < 0.
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Case 3.a: � > 0. In this case, we have one real root y1 for the auxiliary cubic (170), and
two complex roots. The real root to be used in (166)–(169) is given by

y1 = (r + �1/2)1/3 + (r − �1/2)1/3 − γ2

3
(173)

Case 3.b: � = 0. In this case, all roots of the auxiliary cubic (170) are real, with two of
them identical, and given by

y1 =2r1/3 − γ2

3

y2 =y3 = −r1/3
(174)

In this case, we take the root y1 in (174), to be used in the formulas (166)–(169).
Case 3.c: � < 0. In this case, all three roots of the auxiliary cubic (170) are real and

different.

y1 = 2(r2 − �)1/6 cos(θ/3) − γ2

3

y2 = −2(r2 − �)1/6 cos(θ/3 + π/3) − γ2

3
(175)

y3 = −2(r2 − �)1/6 cos(θ/3 − π/3) − γ2

3

Here, θ = tan−1( (−�)1/2

r
). We take the root y1 to be used in (166)–(169).

Appendix 3

The same arguments based on the homogeneous property of λmax and application of Euler’s
theorem can be repeated for the case of the Eigen model, to obtain a solution for the non-
symmetric case, starting from (105). Now, the matrix to consider is

M({x̄α
c }, {η̄αβ}) =

h∑
α �=β=1

η̄αβ
c τ αβ +

h−1∑
α=1

x̄α
c 	α (176)

Since M is clearly a homogeneous function of degree k = 1 in the vector (x̄1
c , x̄

2
c , . . . , x̄

h−1
c ,

{ηαβ
c }), λmax is homogeneous of degree k = 1 as well (the proof is identical as in Property I,

Appendix 1 for the parallel model). Therefore, after Euler’s theorem (see Appendix 1), we
have the identity

λmax −
h−1∑
α=1

x̄α
c xα

c −
h∑

α �=β=1

η̄αβ
c ηαβ

c = 0 (177)

After the saddle-point (103)–(104), we obtain the same components for the eigenvalue �ymax

as in the parallel case, (146),

yα =
⎧⎨
⎩

√
xα

c , 1 ≤ α ≤ h − 1√
1 −∑h−1

γ=1 x
γ
c , α = h

(178)



464 E. Muñoz et al.

Thus, by applying Property III (Appendix 1) for the Eigen model, we obtain

ηαβ
c = 〈ταβ〉 = �yT

maxτ
αβ �ymax

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
xα

c x
β
c + 1 − xα

c , α �= β �= h√
xα

c

(
1 −∑h−1

γ=1 x
γ
c

)+ 1 − xα
c , β = h, α �= h√(

1 −∑h−1
γ=1 x

γ
c

)
x

β
c +∑h−1

γ=1 x
γ
c , α = h, β �= h

(179)

Thus, the mean fitness for the h-states Eigen model under arbitrary mutation scheme is
given by the expression

fm = max
{x1

c ,x2
c ,...,xh−1

c }

{
f (x1

c , x
2
c , . . . , x

h−1
c )e

∑h−1
α �=β=1 μαβ [

√
xα
c x

β
c −xα

c ]

× e
∑h−1

α=1 μαh[
√

xα
c (1−∑h−1

γ=1 x
γ
c )−xα

c ]+∑h−1
β=1 μhβ [

√
(1−∑h−1

γ=1 x
γ
c )x

β
c +∑h−1

γ=1 x
γ
c −1]

− d(x1
c , x

2
c , . . . , x

h−1
c )

}
(180)
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