156 research outputs found

    Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency

    Get PDF
    We propose an optical double-cavity resonator whose response to a signal is similar to that of an Electromagnetically Induced Transparency (EIT) medium. A combination of such a device with a four-level EIT medium can serve for achieving large cross-Kerr modulation of a probe field by a signal field. This would offer the possibility of building a quantum logic gate based on photonic qubits. We discuss the technical requirements that are necessary for realizing a probe-photon phase shift of Pi caused by a single-photon signal. The main difficulty is the requirement of an ultra-low reflectivity beamsplitter and to operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor changes in discussion of experimental conditions

    Dilatonic current-carrying cosmic strings

    Full text link
    We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to appear in Phys. Rev.

    Case Report of Puffinosis in a Manx Shearwater (Puffinus puffinus) Suggesting Environmental Aetiology

    Get PDF
    Publication history: Accepted - 1 December 2022; Published online - 7 December 2022Puffinosis is a disease of a range of seabirds characterised by dorsal and ventral blistering of their webbed feet, conjunctivitis, dry necrosis, leg spasticity, head shaking, loss of balance, tremors, and death. It is associated with Manx shearwaters (Puffinus puffinus), frequently affecting chicks within their underground nesting burrows. The aetiology of the disease is unclear but has been attributed to a type-2 coronavirus associated with Neotombicula mites as a potential vector. However, there is some uncertainty given potential laboratory contamination with mouse hepatitis virus and failure to fulfil Koch’s postulates, with birds injected with isolates remaining healthy. We describe a detailed case report of puffinosis in a Manx Shearwater covering necropsy, histology, bacteriology, and metagenomics including viral sequencing. We found no evidence of viral infection or parasites. Our results are consistent with an entirely environmental aetiology, with caustic faecal ammonia in damp nesting burrows causing conjunctivitis and foot dermatitis breaking the skin, allowing common soil bacteria (i.e., Flavobacterium, Staphylococcus and Serratia spp., Clostridia perfringens and Enterococcus faecalis) to cause opportunistic infection, debilitating the bird and leading to death. A similar condition (foot pad dermatitis or FPD) has been reported in broiler chickens, attributed to caustic faeces, high humidity, and poor environmental conditions during indoor rearing, preventable by adequate ventilation and husbandry. This is consistent with puffinosis being observed in Shearwater nesting burrows situated in tall, dense, vegetation (e.g., bracken Pteridium aquilinum) but rarely reported in burrows situated in well-ventilated, short coastal grasslands. This proposed environmental aetiology accounts for the disease’s non-epizootic prevalence, spatial variation within colonies, and higher frequency in chicks that are restricted to nesting burrows.Niamh Esmonde was supported by a UKRI QUADRAT Doctoral Training Programme (DTP) studentship, grant number NE/S007377/1 funded by the Natural Environment Research Council (NERC). The Agri-Food and Biosciences Institute (AFBI) funded the costs of necropsy, histology, bacteriology, parasitology, and metagenomics as part of the Queen’s–AFBI Alliance. Jignasha Patel, who conducted the metagenomics, was funded by the Research Leaders 2025 Programme cofounded by Teagasc and the European Union Horizon 2020 Research and Innovation Programme under a Marie Skłodowska-Curie grant (grant 754380). Paris Jaggers was supported by a UKRI NERC scholarship (grant NE/S007474/1)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider
    corecore