28 research outputs found

    Effects of anandamide in migraine: data from an animal model

    Get PDF
    Systemic nitroglycerin (NTG) produces spontaneous-like migraine attacks in migraine sufferers and induces a condition of hyperalgesia in the rat 4 h after its administration. Endocannabinoid system seems to be involved in the modulation of NTG-induced hyperalgesia, and probably, in the pathophysiological mechanisms of migraine. In this study, the analgesic effect of anandamide (AEA) was evaluated by means of the formalin test, performed in baseline conditions and following NTG-induced hyperalgesia in male Sprague–Dawley rats. AEA was administered 30 min before the formalin injection. In addition, the effect of AEA (administered 30 min before NTG injection) was investigated on NTG-induced Fos expression and evaluated 4 h following NTG injection. AEA induced a significant decrease in the nociceptive behavior during both phases of the formalin test in the animals treated with vehicle, while it abolished NTG-induced hyperalgesia during the phase II. Pre-treatment with AEA significantly reduced the NTG-induced neuronal activation in nucleus trigeminalis caudalis, confirming the results obtained in our previous study, and in area postrema, while the same treatment induced an increase of Fos expression in paraventricular and supraoptic nuclei of the hypothalamus, parabrachial nucleus, and periaqueductal grey. The study confirms that a dysfunction of the endocannabinoid system may contribute to the development of migraine attacks and that a pharmacological modulation of CB receptors can be useful for the treatment of migraine pain

    Oestrogen-modulated increase of calmodulin-dependent protein kinase II (CamKII) in rat spinal trigeminal nucleus after systemic nitroglycerin

    Full text link
    peer reviewedMigraine can be triggered by systemic administration of the nitric oxide (NO) donor nitroglycerin (NTG) and by abrupt falls in plasma oestradiol. Calmodulin-dependent protein kinase II (CamKII) present in superficial dorsal horns is thought to play a role in sensitization of central nociceptors, a phenomen present in migraineurs. We therefore examined in rats the expression of CamKII in the caudal trigeminal nucleus (TNC) after subcutaneous NTG (10 mg/kg) and its modulation by oestrogen. In male rats and in ovariectomized females, after 4 h NTG increased significantly CamKII expression in the superficial layers of TNC, but not in the upper thoracic spinal cord. NTG had no effect on CamKII expression in oestradiol-treated ovariectomized animals. Thus NTG, i.e. NO, selectively enhances CamKII in the rat TNC and oestradiol blocks this effect. These data may help to understand the mechanisms by which NO triggers migraine attacks and oestrogens influence migraine severity

    Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis.

    Full text link
    Systemic administration of nitroglycerin, a nitric oxide donor, triggers in migraineurs a delayed attack of unknown mechanisms. Subcutaneous nitroglycerin (10 mg/kg) produced a significant increase of nitric oxide synthase (NOS)- and c-fos-immunoreactive neurons in the cervical part of trigeminal nucleus caudalis in rats after 4 h. This effect was not observed in the thoracic dorsal horn. Similar increase of NOS and c-fos was obtained in the brain stem after a somatic nociceptive stimulus, i.e. on the side of the formalin injection in the lip. Nitric oxide is thus able to increase NOS availability in second order nociceptive trigeminal neurons, which may be relevant for central sensitization and the understanding of its effect in migraine

    Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen

    Full text link
    Systemic administration of nitroglycerin, a nitric oxide donor, triggers in migraine patients a delayed attack of unknown mechanism. After puberty migraine is more prevalent in women. Attacks can be triggered by abrupt falls in plasma estrogen levels, which accounts in part for sexual dimorphism, but lacks an established neurobiological explanation. We studied the effect of nitroglycerin on the innervated area of calcitonin gene-related peptide (CGRP) and serotonin-immunoreactive afferents to the superficial laminae of the spinal portion of trigeminal nucleus caudalis, and its modulation by estrogen. In male rats, nitroglycerin produced after 4 h a significant decrease of the area innervated by CGRP-immunoreactive afferents and an increase of that covered by serotonin-immunoreactive fibres. These effects were not observed in the superficial laminae of thoracic dorsal horns. The effect of nitroglycerin was similar in ovariectomized females. In estradiol-treated ovariectomized females the area in the spinal portion of trigeminal nucleus caudalis laminae I-II covered by CGRP-immunoreactive fibres was lower and that of serotonin-immunoreactive fibres was higher than in males and for both transmitters not significantly changed after nitroglycerin. The bouton size of CGRP profiles was smaller in estradiol-treated ovariectomized females, whereas after nitroglycerin it decreased significantly but only in males and ovariectomized females. Nitroglycerin, i.e. nitric oxide, is thus able to differentially influence afferent fibres in the superficial laminae of rat spinal trigeminal nucleus caudalis. Estradiol modulates the basal expression of these transmitters and blocks the nitroglycerin effect. These data may contribute to understanding the mechanisms by which estrogens influence migraine severity and the triggering of attacks by nitric oxide

    Lack of estrogen increases pain in the trigeminal formalin model: a behavioural and immunocytochemical study of transgenic ArKO mice

    Full text link
    peer reviewedIn order to examine the effect of estrogen on facial pain, we first compared the face-rubbing evoked by a formalin injection in the lip of aromatase-knockout (ArKO) mice, lacking endogenous estrogen production, 17 beta-estradiol-treated ArKO mice (ArKO-E2) and wild-type (WT) littermates. During the 'acute' phase of pain the time spent rubbing was similar in the three groups, whereas during the following 'interphase' and the second phase of pain, grooming was increased ill ArKO mice. Estradiol-treatment restored a behaviour similar to WT group. To better understand estrogens modulation on pain processes, we examined changes in 5-HT and CGRP innervations of trigeminal nucleus caudalis (TNC) in ArKO, ArKO-E2 and WT groups sacrified during the interphase. Whereas serotonin and CGRP immunoreactivities were comparable in WT and ArKO non-injected control groups, our data showed that 9 min after formalin injection, the density of serotoninergic terminals increased significantly in WT, but not in ArKO mice, while that of CGRP-immunoreactive fibers was lower in WT than in ArKO mice on the injected side. Estradiol-treatment only partially reversed these changes in ArKO-E2 mice. We conclude that estrogen deprivation in ArKO mice can be responsible for increased nociceptive response and that it is accompanied by transmitter changes favouring pro- over anti-nociceptive mechanisms in TNC during interphase of the formalin model. That estradiol-treatment completely reverses the behavioural abnormality Suggests that estrogens absence produces chiefly functional activation-dependent changes. However, the fact that the immunohistochemical abnormalities were not totally normalized by estradiol-treatment suggested that some permanent developmental alterations may occur in ArKO mice. (c) 2005 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved
    corecore