90 research outputs found

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    Experimental study of the astrophysically important Na 23 (α,p) Mg 26 and Na 23 (α,n) Al 26 reactions

    Get PDF
    The Na23(α,p)Mg26 and Na23(α,n)Al26 reactions are important for our understanding of the Al26 abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using He4 as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the Na23(α,p)Mg26 and the Na23(α,n)Al26 reactions are in good agreement with previous experiments and with statistical-model calculations. The astrophysical reaction rate of the Na23(α,n)Al26 reaction has been reevaluated and it was found to be larger than the recommended rate

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Reaction rate for carbon burning in massive stars

    Get PDF
    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for C12+C12 fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of C12+C12 fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5-4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate

    Fusion measurements of 12C+12C at energies of astrophysical interest

    Get PDF
    The cross section of the 12C+12C fusion reaction at low energies is of paramount importance for models of stellar nucleosynthesis in different astrophysical scenarios, such as Type Ia supernovae and Xray superbursts, where this reaction is a primary route for the production of heavier elements. In a series of experiments performed at Argonne National Laboratory, using Gammasphere and an array of Silicon detectors, measurements of the fusion cross section of 12C+12C were successfully carried out with the γ and charged-particle coincidence technique in the center-of-mass energy range of 3-5 MeV. These were the first background-free fusion cross section measurements for 12C+12C at energies of astrophysical interest. Our results are consistent with previous measurements in the high-energy region; however, our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques

    How well do we understand the reaction rate of C burning?

    Get PDF
    Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed

    Study of the Alm 26 (d,p) Al 27 Reaction and the Influence of the Al 26 0+ Isomer on the Destruction of Al 26 in the Galaxy

    Get PDF
    The existence of Al26 (t1/2=7.17×105 yr) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0+ isomer (Al26m), however, severely complicates the astrophysical calculations. We present for the first time a study of the Al26m(d,p)Al27 reaction using an isomeric Al26 beam. The selectivity of this reaction allowed the study of â.,"=0 transfers to T=1/2, and T=3/2 states in Al27. Mirror symmetry arguments were then used to constrain the Al26m(p,γ)Si27 reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric Al26 via radiative proton capture reactions, which is expected to dominate the destruction path of Al26m in asymptotic giant branch stars, classical novae, and core collapse supernovae

    Spatial distribution of bivalves in relation to environmental conditions (middle Danube catchment, Hungary)

    Get PDF
    The spatial distribution of bivalves in relation to environmental conditions was studied along a second- and third order stream – medium-sized river (River Ipoly) – large river (River Danube) continuum in the Hungarian Danube River system. Quantitative samples were collected four times in 2007 and a total of 1662 specimens, belonging to 22 bivalve species were identified. Among these species, two are endangered (Pseudanodonta complanata, Unio crassus) and five are invasive (Dreissena polymorpha, D. rostriformis bugensis, Corbicula fluminea, C. fluminalis, Anodonta woodiana) in Hungary. The higher density presented by Pisidium subtruncatum, P. supinum, P. henslowanum and C. fluminea suggests that these species may have a key role in this ecosystem. Three different faunal groups were distinguished but no significant temporal change was detected. The lowest density and diversity with two species (P. casertanum and P. personatum) occurred in streams. The highest density and diversity was found in the River Ipoly, in the side arms of the Danube and in the main arm of the Danube with sand and silt substrate, being dominated by P. subtruncatum and P. henslowanum. Moderate density and species richness were observed in the main arm of the Danube with pebble and stone substrate, being dominated by C. fluminea and S. rivicola. Ten environmental variables were found to have significant influence on the distribution of bivalves, the strongest explanatory factors being substrate types, current velocity and sedimentological characteristics.The project was financially supported by the Hungarian Scientific Research Fund under the contract No. OTKA T/046180. Special thanks to the DanubeIpoly National Park for the help in field work.info:eu-repo/semantics/publishedVersio

    First direct observation of enhanced octupole collectivity in 146Ba

    Get PDF
    The octupole strength present in the neutron-rich, radiocative nucleus 146Ba has been experimentally determined for the first time using Coulomb excitation. To achieve this, A=146 fission fragments from CARIBU were post-accelerated by the Argonne Tandem Linac Accelerator System (ATLAS) and impinged on a thin 208Pb target. Using the GRETINA γ-ray spectrometer and the CHICO2 heavy-ion counter, the reduced transition probability B(E3; 3-→0+) was determined as 48(+21-29) W.u. The new result provides further experimental evidence for the presence of a region of octupole deformation surrounding the neutron-rich barium isotopes
    corecore