277 research outputs found
Isolation and properties of PS II membrane fragments depleted of the non heme iron center
AbstractThe functional properties and the content of non heme iron and cytochrome b559 were investigated by measuring flash induced transient changes of the relative fluorescence quantum yield and applying Mössbauer spectroscopy. It was found that untreated PS II membrane fragments contain a heterogeneous population of two types of non heme iron centers and about 2 cytochrome b559 per PS II. Twofold treatment of these samples with a recently described ‘iron depletion’ procedure (MacMillan, F., Lendzian, F., Renger, G. and Lubitz, W. (1995) Biochemistry 34, 3144–8156) leads to a complete loss (below the detection limit of Mössbauer spectroscopy) of the non heme iron center while more than 50% of the PS II complexes retain the functional integrity for light induced formation of the ‘stable’ radical pair YZOX P680Pheo QA−.. This sample type deprived of virtually all non heme iron in PS II provides a most suitable material for magnetic resonance studies that require an elimination of the interaction between Fe2+ and nearby radicals
Evidence of coexistence of change of caged dynamics at Tg and the dynamic transition at Td in solvated proteins
Mossbauer spectroscopy and neutron scattering measurements on proteins
embedded in solvents including water and aqueous mixtures have emphasized the
observation of the distinctive temperature dependence of the atomic mean square
displacements, , commonly referred to as the dynamic transition at some
temperature Td. At low temperatures, increases slowly, but it assume
stronger temperature dependence after crossing Td, which depends on the
time/frequency resolution of the spectrometer. Various authors have made
connection of the dynamics of solvated proteins including the dynamic
transition to that of glass-forming substances. Notwithstanding, no connection
is made to the similar change of temperature dependence of obtained by
quasielastic neutron scattering when crossing the glass transition temperature
Tg, generally observed in inorganic, organic and polymeric glass-formers.
Evidences are presented to show that such change of the temperature dependence
of from neutron scattering at Tg is present in hydrated or solvated
proteins, as well as in the solvents used unsurprisingly since the latter is
just another organic glass-formers. The obtained by neutron scattering at
not so low temperatures has contributions from the dissipation of molecules
while caged by the anharmonic intermolecular potential at times before
dissolution of cages by the onset of the Johari-Goldstein beta-relaxation. The
universal change of at Tg of glass-formers had been rationalized by
sensitivity to change in volume and entropy of the beta-relaxation, which is
passed onto the dissipation of the caged molecules and its contribution to
. The same rationalization applies to hydrated and solvated proteins for
the observed change of at Tg.Comment: 28 pages, 10 figures, 1 Tabl
Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies
Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect
The future of layer-by-layer assembly: A tribute to ACS Nano associate editor Helmuth Möhwald
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles
Recommended from our members
Temperature dependence of protein dynamics simulated with three different water models
The effect of variation of the water model on the temperature dependence of protein and hydration water dynamics is examined by performing molecular dynamics simulations of myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent reorientational relaxation times, pair angular correlations between surface water molecules, and time-averaged structures of the protein are all found to be similar, and the protein dynamical transition is described almost indistinguishably for the three water potentials. The results provide evidence that for some purposes changing the water model in protein simulations without a loss of accuracy may be possible
Capillary electrophoretic separation of nanoparticles
In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N ~ 107) and a typical CZE peak for NCs (N ~ 105). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEFheight) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface
Probing and controlling fluorescence blinking of single semiconductor nanoparticles
In this review we present an overview of the experimental and theoretical development on fluorescence intermittency (blinking) and the roles of electron transfer in semiconductor crystalline nanoparticles. Blinking is a very interesting phenomenon commonly observed in single molecule/particle experiments. Under continuous laser illumination, the fluorescence time trace of these single nanoparticles exhibit random light and dark periods. Since its first observation in the mid-1990s, this intriguing phenomenon has attracted wide attention among researchers from many disciplines. We will first present the historical background of the discovery and the observation of unusual inverse power-law dependence for the waiting time distributions of light and dark periods. Then, we will describe our theoretical modeling efforts to elucidate the causes for the power-law behavior, to probe the roles of electron transfer in blinking, and eventually to control blinking and to achieve complete suppression of the blinking, which is an annoying feature in many applications of quantum dots as light sources and fluorescence labels for biomedical imaging
Diverse Applications of Nanomedicine
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society
- …