8 research outputs found

    Morphologic Features of Invasion in Lung Adenocarcinoma: Diagnostic Pitfalls.

    No full text
    Reproducibility of pulmonary invasive adenocarcinoma diagnosis is poor when applying the World Health Organization (WHO) classification. In this article, we aimed first to explain by 3-dimensional morphology why simple pattern recognition induces pitfalls for the assessment of invasion as applied in the current WHO classification of pulmonary adenocarcinomas. The underlying iatrogenic-induced morphologic alterations in collapsed adenocarcinoma in situ overlap with criteria for invasive adenocarcinoma. Pitfalls in seemingly acinar and papillary carcinoma are addressed with additional cytokeratin 7 and elastin stains. In addition, we provide more stringent criteria for a better reproducible and likely generalizable classification

    Prognostic Impact of MCPyV and TIL Subtyping in Merkel Cell Carcinoma: Evidence from a Large European Cohort of 95 Patients.

    No full text
    Merkel cell carcinoma is a rare (∼ 2000 cases/year in the USA) but aggressive neuroendocrine neoplasm of the skin. In 2008, the Merkel cell polyomavirus (MCPyV) was found to be clonally integrated in approximately 80% of Merkel cell carcinomas. The remaining 20% have large numbers of UV-associated mutations. Importantly, both the UV-induced neoantigens in virus-negative Merkel cell carcinoma and the Merkel cell polyomavirus oncogenes that are required for virus-positive tumor growth are highly immunogenic. Indeed, antigen-specific T cells detected in patients are frequently "dysfunctional/exhausted," and the inhibitory ligand PD-L1 is often expressed by Merkel cell carcinoma cells. These data led to point our attention on the quantity and the quality of the immune response in Merkel cell carcinoma. Here, we found CD8+ lymphocytes are the only singly evaluated lymphocyte subclass that strongly influenced overall survival and disease-specific survival in Merkel cell carcinoma. In addition, we highlighted as Merkel cell polyomavirus is a strong prognostic factor and as it prompts a host immune response involving various lymphocyte subclasses (CD3, CD8, FoxP3, and PD-L1 positive) in MCC. For this reason, we proposed a novel eye-based "immunoscore" model, obtained by tumor infiltrating lymphocytes subtyping (CD3, CD8, FoxP3, and PD-L1) that could provide additional prognostic information in Merkel cell carcinoma

    PD-1 (PDCD1) promoter methylation in Merkel cell carcinoma: prognostic relevance and relationship with clinico-pathological parameters

    No full text
    Merkel cell carcinoma is an aggressive neuroendocrine skin tumor, for which several non-conclusive prognostic factors of adverse clinical behavior have been reported. As promoter methylation of the immune checkpoint receptor CD279/PD-1/PDCD1(mPDCD1) has been shown to be a prognostic factor in different cancers, we investigated its role in Merkel cell carcinoma. mPDCD1was assessed retrospectively in a cohort of 69 Merkel cell carcinoma patients from the University of Bologna, University of Turin and University of Insubria. Kaplan-Meier curves and log-rank tests were calculated for all variables. To assess the influence of mPDCD1, the Cox proportional hazards model and different Royston-Parmar models were evaluated. High PDCD1 methylation (mPDCD1 high ) was associated with a higher overall mortality at both the univariate analysis (log rank test: \u3c7 2 = 5.17, p = 0.023; permutation test: p = 0.023) and the multivariate analysis (HR = 2.111, p = 0.042). The other variables associated with a higher overall mortality at the multivariate analysis were clinical stage III-IV (HR = 2.357, p = 0.008), size > 2 cm (HR = 2.248, p = 0.031) and Merkel cell polyomavirus (HR = 0.397, p = 0.015). Further, mPDCD1 high was strongly associated with older age (81 vs 76 years, p = 0.042), absence of immune cells (92.6%, p < 0.001), no expression of PD-L1 by immune cells (70.4%, p = 0.041) and by both immune and tumor cells (70.4%, p = 0.001). mPDCD1 is a valid prognostic parameter in patients affected by Merkel cell carcinoma. In addition, it could provide an estimate of the global PD-1/PD-L1 expression with potentially relevant implications from a therapeutic point of view

    PD-1 (PDCD1) promoter methylation in Merkel cell carcinoma: prognostic relevance and relationship with clinico-pathological parameters.

    No full text
    Merkel cell carcinoma is an aggressive neuroendocrine skin tumor, for which several non-conclusive prognostic factors of adverse clinical behavior have been reported. As promoter methylation of the immune checkpoint receptor CD279/PD-1/PDCD1(mPDCD1) has been shown to be a prognostic factor in different cancers, we investigated its role in Merkel cell carcinoma. mPDCD1was assessed retrospectively in a cohort of 69 Merkel cell carcinoma patients from the University of Bologna, University of Turin and University of Insubria. Kaplan-Meier curves and log-rank tests were calculated for all variables. To assess the influence of mPDCD1, the Cox proportional hazards model and different Royston-Parmar models were evaluated. High PDCD1 methylation (mPDCD1 <sub>high</sub> ) was associated with a higher overall mortality at both the univariate analysis (log rank test: χ <sup>2</sup> = 5.17, p = 0.023; permutation test: p = 0.023) and the multivariate analysis (HR = 2.111, p = 0.042). The other variables associated with a higher overall mortality at the multivariate analysis were clinical stage III-IV (HR = 2.357, p = 0.008), size > 2 cm (HR = 2.248, p = 0.031) and Merkel cell polyomavirus (HR = 0.397, p = 0.015). Further, mPDCD1 <sub>high</sub> was strongly associated with older age (81 vs 76 years, p = 0.042), absence of immune cells (92.6%, p < 0.001), no expression of PD-L1 by immune cells (70.4%, p = 0.041) and by both immune and tumor cells (70.4%, p = 0.001). mPDCD1 is a valid prognostic parameter in patients affected by Merkel cell carcinoma. In addition, it could provide an estimate of the global PD-1/PD-L1 expression with potentially relevant implications from a therapeutic point of view

    Real-world EGFR testing practices for non-small-cell lung cancer by thoracic pathology laboratories across Europe

    Get PDF
    Background: Testing for epidermal growth factor receptor (EGFR) mutations is an essential recommendation in guidelines for metastatic non-squamous non-small-cell lung cancer, and is considered mandatory in European countries. However, in practice, challenges are often faced when carrying out routine biomarker testing, including access to testing, inadequate tissue samples and long turnaround times (TATs). Materials and methods: To evaluate the real-world EGFR testing practices of European pathology laboratories, an online survey was set up and validated by the Pulmonary Pathology Working Group of the European Society of Pathology and distributed to 64 expert testing laboratories. The retrospective survey focussed on laboratory organisation and daily EGFR testing practice of pathologists and molecular biologists between 2018 and 2021. Results: TATs varied greatly both between and within countries. These discrepancies may be partly due to reflex testing practices, as 20.8% of laboratories carried out EGFR testing only at the request of the clinician. Many laboratories across Europe still favour single-test sequencing as a primary method of EGFR mutation identification; 32.7% indicated that they only used targeted techniques and 45.1% used single-gene testing followed by next-generation sequencing (NGS), depending on the case. Reported testing rates were consistent over time with no significant decrease in the number of EGFR tests carried out in 2020, despite the increased pressure faced by testing facilities during the COVID-19 pandemic. ISO 15189 accreditation was reported by 42.0% of molecular biology laboratories for single-test sequencing, and by 42.3% for NGS. 92.5% of laboratories indicated they regularly participate in an external quality assessment scheme. Conclusions: These results highlight the strong heterogeneity of EGFR testing that still occurs within thoracic pathology and molecular biology laboratories across Europe. Even among expert testing facilities there is variability in testing capabilities, TAT, reflex testing practice and laboratory accreditation, stressing the need to harmonise reimbursement technologies and decision-making algorithms in Europe

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore