1,354 research outputs found

    Conditions for the occurrence of mean-motion resonances in a low mass planetary system

    Full text link
    The dynamical interactions that occur in newly formed planetary systems may reflect the conditions occurring in the protoplanetary disk out of which they formed. With this in mind, we explore the attainment and maintenance of orbital resonances by migrating planets in the terrestrial mass range. Migration time scales varying between millions of years and thousands of years are considered. In the former case, for which the migration time is comparable to the lifetime of the protoplanetary gas disk, a 2:1 resonance may be formed. In the latter, relatively rapid migration regime commensurabilities of high degree such as 8:7 or 11:10 may be formed. However, in any one large-scale migration several different commensurabilities may be formed sequentially, each being associated with significant orbital evolution. We also use a simple analytic theory to develop conditions for first order commensurabilities to be formed. These depend on the degree of the commensurability, the imposed migration and circularization rates, and the planet mass ratios. These conditions are found to be consistent with the results of our simulations.Comment: 11 pages with 4 figures, pdflatex, to appear in the proceedings of the conference "Extra-solar Planets in Multi-body Systems: Theory and Observations"; eds. K. Gozdziewski, A. Niedzielski and J. Schneider, EAS Publication Serie

    Type III migration in a low viscosity disc

    Full text link
    We study the type III migration of a Saturn mass planet in low viscosity discs. The planet is found to experience cyclic episodes of rapid decay in orbital radius, each amounting to a few Hill radii. We find this to be due to the scattering of large- scale vortices present in the disc. The origin and role of vortices in the context of type III migration is explored. It is shown through numerical simulations and semi- analytical modelling that spiral shocks induced by a sufficiently massive planet will extend close to the planet orbital radius. The production of vortensity across shock tips results in thin high vortensity rings with a characteristic width of the local scale height. For planets with masses equal to and above that of Saturn, the rings are co-orbital features extending the entire azimuth. Linear stability analysis show there exists unstable modes that are localised about local vortensity minima which coincide with gap edges. Simulations show that vortices are non-linear a outcome. We used hydrodynamic simulations to examine vortex-planet interactions. Their effect is present in discs with kinematic viscosity less than about an order of magnitude smaller than the typically adopted value of \nu = 10^{-5}\Omega_pr_p(0)^2, where r_p(0) and \Omega_p are the initial orbital radius and angular velocity of the planet respectively. We find that the magnitude of viscosity affects the nature of type III migration but not the extent of the orbital decay. The role of vortices as a function of initial disc mass is also explored and it is found that the amount of orbital decay during one episode of vortex-planet interaction is independent of initial disc mass. We incorporate the concept of the co-orbital mass deficit in the analysis of our results and link it to the presence of vortices at gap edges.Comment: 20 pages, 20 figures, accepted for publication in MNRA

    The Local Instability of Steady Astrophysical Flows with non Circular Streamlines with Application to Differentially Rotating Disks with Free Eccentricity

    Full text link
    We carry out a general study of the stability of astrophysical flows that appear steady in a uniformly rotating frame. Such a flow might correspond to a stellar pulsation mode or an accretion disk with a free global distortion giving it finite eccentricity. We consider perturbations arbitrarily localized in the neighbourhood of unperturbed fluid streamlines.When conditions do not vary around them, perturbations take the form of oscillatory inertial or gravity modes. However, when conditions do vary so that a circulating fluid element is subject to periodic variations, parametric instability may occur. For nearly circular streamlines, the dense spectra associated with inertial or gravity modes ensure that resonance conditions can always be satisfied when twice the period of circulation round a streamline falls within. We apply our formalism to a differentially rotating disk for which the streamlines are Keplerian ellipses, with free eccentricity up to 0.7, which do not precess in an inertial frame. We show that for small e,e, the instability involves parametric excitation of two modes with azimuthal mode number differing by unity in magnitude which have a period of twice the period of variation as viewed from a circulating unperturbed fluid element. Instability persists over a widening range of wave numbers with increasing growth rates for larger eccentricities. The nonlinear outcome is studied in a follow up paper which indicates development of small scale subsonic turbulence.Comment: Accepted for publication in Astronomy and Astrophysic

    How to adapt broad-band gravitational-wave searches for r-modes

    Full text link
    Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.Comment: 8 pages, no figure

    First-order mean motion resonances in two-planet systems: general analysis and observed systems

    Full text link
    This paper focuses on two-planet systems in a first-order (q+1):q(q+1):q mean motion resonance and undergoing type-I migration in a disc. We present a detailed analysis of the resonance valid for any value of qq. Expressions for the equilibrium eccentricities, mean motions and departure from exact resonance are derived in the case of smooth convergent migration. We show that this departure, not assumed to be small, is such that period ratio normally exceeds, but can also be less than, (q+1)/q. (q+1)/q. Departure from exact resonance as a function of time for systems starting in resonance and undergoing divergent migration is also calculated. We discuss observed systems in which two low mass planets are close to a first-order resonance. We argue that the data are consistent with only a small fraction of the systems having been captured in resonance. Furthermore, when capture does happen, it is not in general during smooth convergent migration through the disc but after the planets reach the disc inner parts. We show that although resonances may be disrupted when the inner planet enters a central cavity, this alone cannot explain the spread of observed separations. Disruption is found to result in either the system moving interior to the resonance by a few percent, or attaining another resonance. We postulate two populations of low mass planets: a small one for which extensive smooth migration has occurred, and a larger one that formed approximately in-situ with very limited migration.Comment: Accepted for publication in MNRA

    On the dynamics of multiple systems of hot super-Earths and Neptunes: Tidal circularization, resonance and the HD 40307 system

    Full text link
    [Abridged] We consider the dynamics of a system of hot super-Earths or Neptunes such as HD 40307. We show that, as tidal interaction with the central star leads to small eccentricities, the planets in this system could be undergoing resonant coupling even though the period ratios depart significantly from very precise commensurability. In a three planet system, this is indicated by the fact that resonant angles librate or are associated with long term changes to the orbital elements. We propose that the planets in HD 40307 were in a strict Laplace resonance while they migrated through the disc. After entering the disc inner cavity, tidal interaction would cause the period ratios to increase from two but with the inner pair deviating less than the outer pair, counter to what occurs in HD 40307. However, the relationship between these pairs that occurs in HD 40307 might be produced if the resonance is impulsively modified by an event like a close encounter shortly after the planetary system decouples from the disc. We find this to be in principle possible for a small relative perturbation on the order of a few 1.d-3 but then we find that evolution to the present system in a reasonable time is possible only if the masses are significantly larger than the minimum masses and tidal dissipation is very effective. On the other hand we found that a system like HD 40307 with minimum masses and more realistic tidal dissipation could be produced if the eccentricity of the outermost planet was impulsively increased to about 0.15. The form of resonantly coupled tidal evolution we consider here is quite general and could be of greater significance for systems with inner planets on significantly shorter orbital periods characteristic of for example CoRoT 7 b.Comment: 38 pages, 12 figures, accepted for publication in MNRA

    On the evolution of mean motion resonances through stochastic forcing: Fast and slow libration modes and the origin of HD128311

    Full text link
    Aims. We clarify the response of extrasolar planetary systems in a 2:1 mean motion commensurability with masses ranging from the super Jovian range to the terrestrial range to stochastic forcing that could result from protoplanetary disk turbulence. The behaviour of the different libration modes for a wide range of system parameters and stochastic forcing magnitudes is investigated. The growth of libration amplitudes is parameterized as a function of the relevant physical parameters. The results are applied to provide an explanation of the configuration of the HD128311 system. Methods. We first develop an analytic model from first principles without making the assumption that both eccentricities are small. We also perform numerical N-body simulations with additional stochastic forcing terms to represent the effects of putative disk turbulence. Results. Systems are quickly destabilized by large magnitudes of stochastic forcing but some stability is imparted should systems undergo a net orbital migration. The slow mode, which mostly corresponds to motion of the angle between the apsidal lines of the two planets, is converted to circulation more readily than the fast mode which is associated with oscillations of the semi-major axes. This mode is also vulnerable to the attainment of small eccentricities which causes oscillations between periods of libration and circulation. Conclusions. Stochastic forcing due to disk turbulence may have played a role in shaping the configurations of observed systems in mean motion resonance. It naturally provides a mechanism for accounting for the HD128311 system.Comment: 15 pages, 8 figures, added discussion in h and k coordinates, recommended for publicatio

    Global m=1 modes and migration of protoplanetary cores in eccentric protoplanetary discs

    Get PDF
    We calculate global m=1m=1 modes with low pattern speed corresponding to introducing a finite eccentricity into a protoplanetary disc. We consider disc models which are either isolated or contain one or two protoplanets orbiting in an inner cavity. Global modes that are strongly coupled to inner protoplanets are found to have disc orbits which tend to have apsidal lines antialigned with respect to those of the inner protoplanets. Other modes corresponding to free disc modes may be global over a large range of length scales and accordingly be long lived. We consider the motion of a protoplanet in the earth mass range embedded in an eccentric disc and determine the equilibrium orbits which maintain fixed apsidal alignment with respect to the disc gas orbits. Equilibrium eccentricities are found to be comparable or possibly exceed the disc eccentricity. We then approximately calculate the tidal interaction with the disc in order to estimate the orbital migration rate. Results are found to deviate from the case of axisymmetric disc with near circular protoplanet orbit once eccentricities of protoplanet and disc orbits become comparable to the disc aspect ratio in magnitude. Aligned protoplanet orbits with very similar eccentricity to that of the gas disc are found to undergo litle eccentricity change while undergoing inward migration in general. However, for significantly larger orbital eccentricities, migration may be significantly reduced or even reverse from inwards to outwards. Thus the existence of global non circular motions in discs with radial excursions comparable to the semi-thickness may have important consequences for the migration and survival of protoplanetary cores in the earth mass range.Comment: Accepted for publication by A &

    Dust settling in local simulations of turbulent protoplanetary disks

    Full text link
    In this paper, we study the effect of MHD turbulence on the dynamics of dust particles in protoplanetary disks. We vary the size of the particles and relate the dust evolution to the turbulent velocity fluctuations. We performed numerical simulations using two Eulerian MHD codes, both based on finite difference techniques: ZEUS--3D and NIRVANA. These were local shearing box simulations incorporating vertical stratification. Both ideal and non ideal MHD simulations with midplane dead zones were carried out. The codes were extended to incorporate different models for the dust as an additional fluid component. Good agreement between results obtained using the different approaches was obtained. The simulations show that a thin layer of very small dust particles is diffusively spread over the full vertical extent of the disk. We show that a simple description obtained using the diffusion equation with a diffusion coefficient simply expressed in terms of the velocity correlations accurately matches the results. Dust settling starts to become apparent for particle sizes of the order of 1 to 10 centimeters for which the gas begins to decouple in a standard solar nebula model at 5.2 AU. However, for particles which are 10 centimeters in size, complete settling toward a very thin midplane layer is prevented by turbulent motions within the disk, even in the presence of a midplane dead zone of significant size. These results indicate that, when present, MHD turbulence affects dust dynamics in protoplanetary disks. We find that the evolution and settling of the dust can be accurately modelled using an advection diffusion equation that incorporates vertical settling. The value of the diffusion coefficient can be calculated from the turbulent velocity field when that is known for a time of several local orbits.Comment: 15 pages, 16 figures, accepted in Astronomy & Astrophysic
    • 

    corecore