Aims. We clarify the response of extrasolar planetary systems in a 2:1 mean
motion commensurability with masses ranging from the super Jovian range to the
terrestrial range to stochastic forcing that could result from protoplanetary
disk turbulence. The behaviour of the different libration modes for a wide
range of system parameters and stochastic forcing magnitudes is investigated.
The growth of libration amplitudes is parameterized as a function of the
relevant physical parameters. The results are applied to provide an explanation
of the configuration of the HD128311 system.
Methods. We first develop an analytic model from first principles without
making the assumption that both eccentricities are small. We also perform
numerical N-body simulations with additional stochastic forcing terms to
represent the effects of putative disk turbulence.
Results. Systems are quickly destabilized by large magnitudes of stochastic
forcing but some stability is imparted should systems undergo a net orbital
migration. The slow mode, which mostly corresponds to motion of the angle
between the apsidal lines of the two planets, is converted to circulation more
readily than the fast mode which is associated with oscillations of the
semi-major axes. This mode is also vulnerable to the attainment of small
eccentricities which causes oscillations between periods of libration and
circulation.
Conclusions. Stochastic forcing due to disk turbulence may have played a role
in shaping the configurations of observed systems in mean motion resonance. It
naturally provides a mechanism for accounting for the HD128311 system.Comment: 15 pages, 8 figures, added discussion in h and k coordinates,
recommended for publicatio