102 research outputs found

    Adjacent LSTM-Based Page Scheduling for Hybrid DRAM/NVM Memory Systems

    Get PDF
    Recent advances in memory technologies have led to the rapid growth of hybrid systems that combine traditional DRAM and Non Volatile Memory (NVM) technologies, as the latter provide lower cost per byte, low leakage power and larger capacities than DRAM, while they can guarantee comparable access latency. Such kind of heterogeneous memory systems impose new challenges in terms of page placement and migration among the alternative technologies of the heterogeneous memory system. In this paper, we present a novel approach for efficient page placement on heterogeneous DRAM/NVM systems. We design an adjacent LSTM-based approach for page placement, which strongly relies on page accesses prediction, while sharing knowledge among pages with behavioral similarity. The proposed approach leads up to 65.5% optimized performance compared to existing approaches, while achieving near-optimal results and saving 20.2% energy consumption on average. Moreover, we propose a new page replacement policy, namely clustered-LRU, achieving up to 8.1% optimized performance, compared to the default Least Recently Used (LRU) policy

    The step project:societal and political engagement of young people in environmental issues

    Get PDF
    Decisions on environmental topics taken today are going to have long-term consequences that will affect future generations. Young people will have to live with the consequences of these decisions and undertake special responsibilities. Moreover, as tomorrow’s decision makers, they themselves should learn how to negotiate and debate issues before final decisions are made. Therefore, any participation they can have in environmental decision making processes will prove essential in developing a sustainable future for the community.However, recent data indicate that the young distance themselves from community affairs, mainly because the procedures involved are ‘wooden’, politicians’ discourse alienates the young and the whole experience is too formalized to them. Authorities are aware of this fact and try to establish communication channels to ensure transparency and use a language that speaks to new generations of citizens. This is where STEP project comes in.STEP (www.step4youth.eu) is a digital Platform (web/mobile) enabling youth Societal and Political e-Participation in decision-making procedures concerning environmental issues. STEP is enhanced with web/social media mining, gamification, machine translation, and visualisation features.Six pilots in real contexts are being organised for the deployment of the STEP solution in 4 European Countries: Italy, Spain, Greece, and Turkey. Pilots are implemented with the direct participation of one regional authority, four municipalities, and one association of municipalities, and include decision-making procedures on significant environmental questions.</p

    EXA2PRO programming environment:Architecture and applications

    Get PDF
    The EXA2PRO programming environment will integrate a set of tools and methodologies that will allow to systematically address many exascale computing challenges, including performance, performance portability, programmability, abstraction and reusability, fault tolerance and technical debt. The EXA2PRO tool-chain will enable the efficient deployment of applications in exascale computing systems, by integrating high-level software abstractions that offer performance portability and efficient exploitation of exascale systems' heterogeneity, tools for efficient memory management, optimizations based on trade-offs between various metrics and fault-tolerance support. Hence, by addressing various aspects of productivity challenges, EXA2PRO is expected to have significant impact in the transition to exascale computing, as well as impact from the perspective of applications. The evaluation will be based on 4 applications from 4 different domains that will be deployed in JUELICH supercomputing center. The EXA2PRO will generate exploitable results in the form of a tool-chain that support diverse exascale heterogeneous supercomputing centers and concrete improvements in various exascale computing challenges

    Bottom-up development of nanoimprinted PLLA composite films with enhanced antibacterial properties for smart packaging applications

    Get PDF
    Altres ajuts: ICN2 is supported by the CERCA Program/Generalitat de Catalunya.In this work, polymer nanocomposite films based on poly(L-lactic acid) (PLLA) were reinforced with mesoporous silica nanoparticles, mesoporous cellular foam (MCF) and Santa Barbara amorphous-15 (SBA). PLLA is a biobased aliphatic polyester, that possesses excellent thermomechanical properties, and has already been commercialized for packaging applications. The aim was to utilize nanoparticles that have already been established as nanocarriers to enhance the mechanical and thermal properties of PLLA. Since the introduction of antibacterial properties has become an emerging trend in packaging applications, to achieve an effective antimicrobial activity, micro/nano 3D micropillars decorated with cone- and needle-shaped nanostructures were implemented on the surface of the films by means of thermal nanoimprint lithography (t-NIL), a novel and feasible fabrication technique with multiple industrial applications. The materials were characterized regarding their composition and crystallinity using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively, and their thermal properties using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their mechanical properties were examined by the nanoindentation technique, while the films' antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus strains was tested in vitro. The results demonstrated the successful production of nanocomposite PLLA films, which exhibited improved mechanical and thermal properties compared to the pristine material, as well as notable antibacterial activity, setting new groundwork for the potential development of biobased smart packaging materials

    Optimization of Dynamic Data Structures in Multimedia Embedded Systems Using Evolutionary Computation

    Get PDF
    Embedded consumer devices are increasing their capabilities and can now implement new multimedia applications reserved only for powerful desktops a few years ago. These applications share complex and intensive dynamic memory use. Thus, dynamic memory optimizations are a requirement when porting these applications. Within these optimizations, the refinement of the Dynamically (de)allocated Data Type (or DDT) implementations is one of the most important and difficult parts for an efficient mapping onto low-power embedded devices. In this paper, we describe a new automatic optimization approach for the DDTs of object-oriented multimedia applications. It is based on an analytical pre-characterization of the possible elementary DDT blocks, and a multi-objective genetic algorithm to explore the design space and to select the best implementation according to different optimization criteria (i.e., memory accesses, memory footprint and energy consumption). Our results in real-life multimedia applications show that the best implementations of DDTs can be obtained in an automated way in few hours, while typically designers would require days to find a suitable implementation, achieving important savings in exploration time with respect to other state-of-the-art heuristics-based optimization methods for this task

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp &lt; 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.&amp; nbsp;Published under an exclusive license by AIP Publishing
    corecore