View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

Optimization of Dynamic Data Structures in Multimedia Embedded Systems
Using Evolutionary Computation

David Atienza'?, Christos Baloukas?, Lazaros Papadopoulos®, Christophe Poucet?,
Stylianos Mamagkakis?, Jose I. Hidalgo®, Francky Catthoor?, Dimitrios Soudris® and Juan Lanchares'
IDACYA/UCM, Madrid, Spain. datienza@dacya.ucm.es ; {hidalgo, julandan} @fis.ucm.es
2 LSI/EPFL, Lausanne, Switzerland. david.atienza@epfl.ch
3 VLSI Lab/DUTH, Thrace, Greece. {cmpalouk, Ipapadop, dsoudris} @ee.duth.gr
‘DDT/IMEC, Leuven, Belgium. {poucetc, mamagka, catthoor} @imec.be *

Abstract

Embedded consumer devices are increasing their ca-
pabilities and can now implement new multimedia appli-
cations reserved only for powerful desktops a few years
ago. These applications share complex and intensive dy-
namic memory use. Thus, dynamic memory optimiza-
tions are a requirement when porting these applications.
Within these optimizations, the refinement of the Dynami-
cally (de)allocated Data Type (or DDT) implementations is
one of the most important and difficult parts for an efficient
mapping onto low-power embedded devices.

In this paper, we describe a new automatic optimization
approach for the DDTs of object-oriented multimedia appli-
cations. It is based on an analytical pre-characterization of
the possible elementary DDT blocks, and a multi-objective
genetic algorithm to explore the design space and to select
the best implementation according to different optimization
criteria (i.e., memory accesses, memory footprint and en-
ergy consumption). Our results in real-life multimedia ap-
plications show that the best implementations of DDTs can
be obtained in an automated way in few hours, while typi-
cally designers would require days to find a suitable imple-
mentation, achieving important savings in exploration time
with respect to other state-of-the-art heuristics-based opti-
mization methods for this task.

1 Introduction

In forthcoming technologies of embedded systems a
great amount of applications (e.g., 3D games, video-
players) coming from the general-purpose domain need to
be integrated in an extremely compact device. However,
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embedded systems struggle to execute these complex ap-
plications because they come from desktop systems, with
very different restrictions regarding memory use features,
and more concretely not concerned with an efficient use of
the dynamic memory. In fact, a desktop computer typically
includes between 512 and 1024 MB of RAM memory at
least, as opposed to the 32 or 64 MB present in latest embed-
ded systems. Therefore, one of the main tasks to be devel-
oped during the porting process of multimedia applications
for embedded multimedia systems is the optimization of the
dynamic memory subsystem. To this end, it is required to
suitably choose the Dynamic Data Types (DDTs) according
to the specific application and final system requirements.

To optimize the use of dynamic memory, the designer
must choose among a number of possible DDT implementa-
tions [1, 23] (dynamic arrays, linked lists, etc.) the best one
in each case, according to the specific restrictions of typical
embedded design metrics, such as, performance, memory
footprint and energy consumption. This task is typically
performed using a pseudo-exhaustive evaluation of the de-
sign space of DDT implementations (i.e., multiple execu-
tions) for the application to attain the Pareto’s front [8],
which would try to cover all the optimal implementation
points for the aforementioned required design metrics. The
construction of this Pareto’s front is a very time-consuming
process, sometimes even unaffordable. For instance, in
the case of an embedded application including 30 different
DDTs and 20 design parameters that need to be explored for
16 basic relevant implementations of DDTs for multimedia
applications (as proposed in [12]), the number of experi-
ments (i.e., multiple runs of the application) that need to be
performed is 9600 implementations, which is not feasible
to be manually tested.

Moreover, due to the inter-dependencies of DDTs,
namely, one DDT implementation behavior may affect the
performance or memory footprint of another one [8], the re-
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finement process must explore overall combinations of the
different DDTs. Thus, the number of experiments to be car-
ried out typically becomes unaffordable even for a small
number of DDTs. Also, optimization techniques relying on
partial cost estimators to enable covering and pruning of the
design space of possible DDT implementations have been
proposed for embedded systems [2]. However, in these ap-
proaches (even with a predefined set of possible DDT im-
plementation alternatives), the exploration phase for com-
plex applications still takes days due to the lack of methods
to capture the aforementioned inter-dependencies and col-
lateral effects of multiple DDTs interacting together, as it
occurs in the latest dynamic multimedia applications ported
to embedded systems (e.g., games or scalable video render-
ing applications [21, 22, 8]).

In addition, extending the set of available DDTs with
new implementations of multi-layered (complex) DDTs of-
ten proves to be programming intensive. Even when stan-
dardized languages (if used at all) offer considerable sup-
port, the developer still has to define the access pattern on
a case-by-case basis. Thus, the optimization of DDT im-
plementations overall constitutes one of the most difficult
design challenges when mapping state-of-the-art dynamic
multimedia applications on low-power and high-speed pro-
cessors, since the target platforms are often not equipped
with extensive hardware and system support for dynamic
memory.

This paper presents a novel and automatic optimiza-
tion approach for the DDTs of multimedia applications,
which relies on the definition and the analytical pre-
characterization of the possible elementary DDT blocks,
which are subsequently used in a Genetic Algorithm (GA)
of type Vector Evaluated Genetic Algorithm (VEGA) [18])
to model the existing inter-dependencies of using differ-
ent DDTs implementations. Then, this modeling of inter-
dependencies is utilized to prune the design space, and to se-
lect the best choice according to the user’s metrics. Hence,
given an application to be optimized for a certain embedded
system, the proposed optimization framework makes use of
application profiling and, in a completely automated way,
returns for each of the included dynamic variables in the
target application the best multi-layer DDT implementation
for a concrete user-defined optimization metric (i.e., mem-
ory footprint, memory accesses, energy consumption or lin-
ear combinations of them), or a number of overall solutions
that respect the defined user constraints (Pareto’s front).

This paper is organized as follows. In Section 2, we
overview related work on DDTs design and optimization.
In Section 3, we present our multi-objective optimization
framework. In Section 4, we present our experimental re-
sults with real-life multimedia embedded applications and
compare with state-of-the-art optimization heuristics to op-
timize DDT applications. Finally, in Section 5, we sum-

marize the contributions of the paper and present future re-
search directions.

2 Related Work

It is widely accepted that forthcoming multimedia ap-
plications will require dynamic memory in embedded sys-
tems due to their dynamic behavior (e.g., the number of ob-
jects rendered on the screen while playing can significantly
vary) and important research work has been already started
through the optimization of dynamic data storage (or DDTs)
for embedded systems [10].

Regarding DDT refinement, in general-purpose software
and algorithms design [1, 23], primitive data structures are
commonly implemented as mapping tables. They are used
to achieve software implementations with high performance
or with low memory footprint. Additionally, the Standard
Template C++ Library (STL) [19] or other proposed tem-
plates [4] provide many basic data structures to help design-
ers to develop new algorithms without being worried about
complex DDT implementation issues. These libraries usu-
ally provide interfaces to simple DDT implementations and
the construction of complex ones is a responsibility of the
developer. Furthermore, these libraries focus exclusively
on performance and while they can be considered as ac-
ceptable general-purpose solutions, they are not suitable for
new generation embedded devices, where performance, en-
ergy consumption and memory footprint must be optimized
together.

For embedded software, suitable access methods, power-
aware DDT transformations and pruning strategies based on
heuristics have started to be proposed for multimedia sys-
tems [8, 2]. However, these approaches require the devel-
opment of efficient pruning function costs and fully manual
optimizations; Otherwise they are not able to capture the
evaluation of inter-dependencies of multiple DDTs imple-
mentations operating together, as the proposed method us-
ing evolutionary computation achieves. Also, several trans-
formations of data structures for compilers have simplified
local loops in embedded programs [16]. Nevertheless, they
are not suitable for exploration of complex DDTs employed
in modern multimedia applications, because they handle
only very simple data structures (e.g., arrays or pointer ar-
rays), and mostly focus on performance.

In addition, according to the characteristics of certain
parts of multimedia applications, several transformations
for DDTs and design methodologies [20, 3, 5] have been
proposed for static data profiling and optimization consid-
ering static memory access patterns to physical memories.
In this context, the use of GA-based optimization has been
applied to solve linear and non-linear problems by exploring
all regions of the state space in parallel. Thus, it is possible
to perform optimizations in non-convex regular functions,
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Figure 1: Overview of the DDTs optimization flow

and also to select the order of algorithmic transformations in
concrete types of source codes [13, 14, 17]. However, such
techniques are not applicable in DDT implementations, due
to the initially unpredictable nature of the data to be stored
at compile-time.

3 DDTs Global Optimization Flow

The proposed optimization framework uses three differ-
ent phases to perform the automatic exploration of DDT
implementations using evolutionary computation. Figure 1
shows an overview of the different phases (in light gray)
and the inputs (in dark gray) required to perform the over-
all DDTs optimization. In the first phase, there is an initial
profiling of the iterator-based access methods to the differ-
ent DDTs used in the application (Section 3.1). Next, using
this detailed report of the accesses to the DDTs done by the
application, by using our own analytical characterization of
the basic and multi-level DDTs (Section 3.2) and the char-
acteristics of the final platform, an exploration of the design
space of DDTs implementation is performed using multi-
objective evolution computation (Section 3.3).

Iterator-Based DDTs
brary

3.1 Profiling Li-

To enable the exploration of different data-type refine-
ments, it is first necessary to understand how the different
DDTs are being used in each studied application. Since the
target applications are dynamic, hence the use of DDTs, it is
therefore necessary to profile them to get an accurate view
of the different demands of the data-types at runtime. As we
want to explore the different potential implementations for
the DDTs, it is necessary that this profiling happens not at
the memory level, but at the interface level. Thus, we have
expanded our profiling library [7] with several higher level
profiling packets.

According to the standard interface defined by STL [19],
we have re-implemented a sequence type, vector, that

Implementation

logs all the different semantical operations. One concrete
and more practical advantage to sticking to a commonly
used interface, is that limited changes are required in the
sources to profile an application, and they can be performed
automatically by searching for the declaration of data types
in the code sources of the application with a standard parser
of a C++ compiler, and then changing the type of the found
data types from the STL vector-type to the profiling vector-
type, without requiring a modification of the remainder of
the application where the data-type is actually being ac-
cessed.

A careful analysis of the sequence interface indicates that
not only operations of the container, but also the iterator
operations used to access the stored elements [5, 1] must
be logged. To enable us to couple the logging of memory
accesses to specific containers, it is necessary to know at
each point in time, from the profiling information, which
container uses which memory segments. Therefore, the
constructor, destructor, copy constructor and swap opera-
tion are logged as separate packets. Other similar opera-
tions are the accessing of an element, the addition of an
element, the removal of an element and the clearing of the
container. Since it is possible to obtain references to an ele-
ment in a container, no distinguishing exists between reads
and writes.

Additionally, the iterator methods to access an element
or the updating of an iterator, either incrementally or us-
ing random offsets, are distinguished as well. The reason-
ing to differentiate these two types of operations is that this
gives different trade-offs for the implementation of a DDT,
which need to be explored in our optimization process using
evolutionary computation (see Section 3.3). For instance,
for an array-like data type, randomly moving the iterator
through the contents of the array has O(1) access and large
O(n) memory footprint requirements, while for a compact
list-like implementation of a sequence, this has O(n) access
requirements.

3.2 Analytical Modeling of DDT Imple-
mentations

In a first pre-characterization phase we have defined the
equations to evaluate the different basic blocks of DDT im-
plementations. A DDT is a software abstraction by means
of which we can manipulate and access data. The imple-
mentation of a DDT has two main components. First, it
has storage aspects that determine how data memory is allo-
cated and freed at run-time and how this memory is tracked.
Second, it includes an access component, which can refer
to two different basic access patterns: sequential or iterator-
based and random access. In our case we have classified the
DDT implementations in basic DDT and multi-layer imple-
mentations relevant for embedded multimedia applications,
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DDT Sequential (IVA,) Random (VA,) Average Size
implem. Access Count Access Count (Sav)
SLL(AR) 3x N, + N, s +3 Bsw + R
SLLARO) | 3x N, +N, | gl + 20N 41 | 75, + Mo x (35, + s7)
DLL(AR) 3x N.+ N, - +3 65w + §= X (48w + s7)
DLL(ARO) | 3 X Ne+ Ny | 25~ + 558 + 5 | 8sw + 3= X (4sy + s7)
SLL 3 x N, Net1 484 + Ne(284 + s7)
SLL(O) 3 x N,  + 5 65w + Ne (25, + s7)
DLL 3 x N, 4N, +1 55w + No(354 + 57)
DLL(O) 3 x N, ]36 + 3 75w + Ne(38y + 57)
AR N, 1 N, X sp

AR(P) 2x N, 2 No(57 + 5u)

Table 1: Analytical characterization of DDT implementations considered in the exploration

as proposed in [11, 8]. The basic DDTs are the following
ones:

e Array (AR): is a set of sequentially indexed ele-
ments of size s7. Each element of the array is a record
of the application.

e Single Linked List (SLL): is a single linked
list of vectors of type sp. Each element of the list is
connected with the next element through a pointer.

e Double Linked List (DLL): is a double
linked list of vectors of type T'e. Each element of
the list is connected with the next and the previous
element with two pointers (of size s,,), one pointing
to the previous element and one to the next.

In addition, we have included in our exploration the fun-
damental key variations of basic DDTs for embedded mul-
timedia applications [8, 2] in order to cover effectively the
design space of DDT implementations for latest multimedia
consumer systems, namely:

e Pointer (P): in the pointer variation of each ba-
sic DDT, the record of the application is stored outside
the DDT and is accessed via a pointer. This leads to
a smaller DDT size, but also to an extra memory ac-
cess to reach the actual data. All DDTs used in our
exploration comply to this variation except the simple
array.

e Roving Pointer (O): The roving pointer is an
auxiliary pointer (of size T}..y) useful to access a par-
ticular element of a list with less accesses in case of
iterator-based access patterns. For instance, for an ar-
ray if you access element n + 1 immediately after ele-
ment n, your average access count is 1 4 1 instead of
n/2+ 1.

Then, these simple DDTs can be combined in multi-
layered structures that offer different trade-offs between
memory use, performance and energy consumption. These
trade-offs are shown in the analytical characterization of the
multi-layer DDTs used in our exploration, presented in Ta-
ble 1. In this table N A, refers to the number of accesses
needed to the retrieve one value with a random access pat-
tern to the DDT, N A, relates to the total number of ac-
cesses required to access all the values stored in the DDT
with an iterator-based access pattern. Then, S,, indicates
the average memory footprint used by the DDT during the
execution of the application.

The analyses for both types of access counts and the av-
erage memory footprint are based on a number of parame-
ters, which can be extracted from the initial profiling phase
of the presented method. These parameters are the follow-
ing ones: N, is the number of valid or initialized elements
in the DDT, NV, is the total number of reserved or allocated
positions that can be used to store elements in the DDT, s,,
is the width of a word on the architecture and st the size
of one element of type 7', and grouping-level of the basic
elements. Then, these equations are used in the evaluation
phase of our exploration process of DDT implementations
using evolutionary computation, which is explained next
(Section 3.3), since dynamic multimedia embedded appli-
cations are made of multiple dynamic variables and the use
of a concrete DDT implementation for a particular variable
can affect the overall cost of the rest of the variables in the
multi-objective optimization process.

3.3 Multi-Objective
DDTs

Optimization of

GAs [9] are stochastic optimization heuristics where the
exploration of the solution space of a certain problem is
carried out by imitating the population genetics stated in
Darwin’s theory of evolution. Selection, crossover and
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mutation operators, derived directly from natural evolution
mechanisms, are applied to a population of solutions, thus
favoring the birth and survival of the best solutions. GAs
have been successfully applied to many NP-hard combina-
torial optimization problems and work by encoding poten-
tial solutions (individuals) to a problem by bit strings (chro-
mosomes), and by combining their codes and, hence, their
properties. In order to apply GAs to a problem, a genetic
representation of each individual has first to be found. Fur-
thermore, an initial population has to be created, as well as
defining a cost function to measure the fitness of each solu-
tion.

As a second step we need to design the genetic oper-
ators that will allow us to produce a new population of
DDT solutions from a previous one, by capturing the inter-
dependencies of the different DDT implementations work-
ing concurrently. Then, by iteratively applying the genetic
operators to the current population, the fitness of the best in-
dividuals in the population converges to targeted solutions,
according to the metric/s to be optimized and the weight of
each of these metrics. For an overview of GAs the reader is
referred to [15].

Oto1 2to5 6to8 9to12 | 13to14 | 15t0 18 | 19to21 | 22t025 Bit
positions
Levels Basic | Elements | DS Levels Basic Elements | DS Meaning
Fields Fields
Variable 1 Variable 2

Figure 2: Example of a 26-bit chromosome

3.3.1 Genetic Representation

In order to apply a GA correctly we need to define a ge-
netic representation of the design space of all possible DDT
implementations alternatives. Moreover, to be able to ap-
ply the VEGA optimization process and cover all possible
inter-dependencies of DDT implementations for different
dynamic variables of an application, we must guarantee that
all the chromosomes represent real and feasible solutions to
the problem and ensure that the search space is covered in
a continuous and optimal way. To this end, we define the
implementation of the variables of a program by storing the
following information on each chromosome:

e Data Structure (DS): this field represents one of the
16 different possibilities using the previous DDTs ana-
lytically characterized (Table 1) and 6 additional basic
key merging and splitting combinations, as [8] has pro-
posed for multimedia applications. Therefore, using a
binary encoding we need 4 bits.

e Number of elements (Elements): this field represents
the grouping factor of elements, up to eight elements

(3 bits), which can create optimal access patterns in
dynamic multimedia applications, as outlined by [8].

e Number of Levels of the Data Structure (Levels): this
field can specify up to 4 levels of basic DDT imple-
mentations grouped together (2 bits).

e Basic Fields: Our methodology enables in its encoding
the representation of up to 16 fields (4 bits) to cover a
large exploration space in this field. However, accord-
ing to our experience with real-life applications, we
typically would not find optimal data structures with
more than 7 or 8 basic fields, which can enable reduc-
ing the size of this field to improve further the explo-
ration time. Nevertheless, even with this large size for
this field, the observed exploration time for real-life
applications is very limited, i.e., few hours (see Sec-
tion 4).

Consequently, using this chromosome structure we need
(4+3+2+4)=13 bits to represent the solution proposed for
each variable, and if an application has N variables, each
chromosome has to be constituted by N*13 bits (genes). For
example, the first application we have tested in our exper-
imental results (i.e., Simblob, see Section 4) uses two dy-
namic variables. A potential solution would be represented
by a 26-bit chromosome (see Figure 2). Our current imple-
mentation of the exploration framework is able to explore
applications with up to 40 DDTs at the same time, which
can cover all the real-life embedded multimedia applica-
tions we are aware of.

Genemation i

el Enexgy [—
Selection Shuffling Crossover M utation
> »| M emory >
Perform ance
TndividualM

Genemtion i+1

Figure 3: VEGA-based design space exploration method

3.3.2 Fitness function

After performing once the profiling of the real application
for a realistic input set, the information required for the an-
alytical characterization of the DDTs implementations con-
sidered is available (see Section 3.2 for more details), as
well as the number of read (/V,) and write (V,.) accesses
to each DDT during execution. Thus, for each DDT im-
plementation available in a certain generation we can com-
pute the performance (Perf related to the number of ac-
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cesses to layers of the memory hierarchy), memory foot-
print (AvMem in Bytes) and energy values (Energy in n.J)
using the equations of Table 1, according to the different
types of access methods (sequential and random) used in
each target embedded application. These values are evalu-
ated for each individual DDT, which represents a solution,
by means of a fitness function.

The objective of our algorithm is to obtain DDT im-
plementations that optimize the aforementioned metrics for
each variable in the application (energy, memory use and
performance). Therefore, the fitness process starts with the
decoding of the individuals. Next, for each possible vari-
able (and its valid DDTs in the current generation of the
exploration) we compute the following equations:

Perf =(NA, + (NAg* Npop) * (N, + Ny) +

+ (Npa/4) * Tamem + (N Aca * 2) (1)
AvMem = Sy )
Energy = (Npa * Epa) + (Npw * Erw) +

+ (Sav * Eest) (3)

In this work we consider a basic memory hierarchy that
consists of a main shared memory and a L1 data-cache.
Other memory hierarchies could be modeled as well by
modifying the previous equations. In this case, N4y, is
the number of random accesses to elements stored in the
DDT made by the running application, N,.,, is the number
of reads/writes to the L1 data-cache memory and IV, is the
number of misses in the data-cache. We consider that each
cache line contains four blocks; Thus, the amount of misses
is divided by this constant. Then, T}, is the average cy-
cle time that requires an access to the main shared memory
and N A_cd is the cycle time cost of creating/destructing the
DDT implementation. It has to be included twice since in
our modeling all the data structures are created at the begin-
ning and deleted at the end, no DDTs remain allocated when
the considered application finishes its execution. Finally,
regarding the energy calculations, we consider in this work
in-place sharing, as the DDTs lifetimes are short. Then, E,,,
is the energy consumed per access to main memory, E,.,, is
the energy consumption per access to the cache, and F.g; is
the static energy consumed by the main memory.

Note that according to our empirical validation with sev-
eral multimedia applications [7], we assume in our energy
calculations an average miss rate of the cache memory be-
low 5% of the overall memory accesses. However, this
value is user-configurable in our VEGA-based exploration
process and even additional multi-level cache miss rate ef-
fects can be configured. In addition, it is possible to in-
troduce some constraints and weights for the metrics to be
optimized. For example, we can fix maximum values of
performance, memory use and energy if the final embedded

Energy (x10-1J)

70

50

40

30 |

/3

2
Memory Acceses (x108)

Figure 4: 3D Pareto curve (memory footprint, memory ac-
cesses and energy consumption) of combined DDTs im-
plementation solutions for Simblob obtained using the pro-
posed evolutionary-based optimization framework)

system requires it.

3.3.3 Multi-Objective Algorithm

Multi-objective optimization could be defined in our case as
the problem of finding a vector of decision variables which
meets a set of constraints, and then this vector of decision
variables is used to optimize a vector function whose el-
ements represent the objective functions. These functions
form a mathematical description of performance criteria
which are usually in conflict with each other. Hence, the
term optimize means finding such a solution which would
give acceptable values to all the objective functions (en-
ergy, performance and memory in our problem) for the
designer [17]. The notion of acceptable values is defined
by the weight that the designer gives to each optimization
metric, enabling linear combinations of the aforementioned
metrics in our case and creating Pareto curves of solutions.
In order to find these Pareto’s curves for problems of great
difficulty, several multi-objective evolutionary algorithms
have been recently proposed [6]. Among them, one that has
been demonstrated to be very efficient is the approximation
proposed by Schaffer [18]. The main idea is an extension
of the Simple Genetic Algorithm, which was called VEGA,
and that differs from the first one only in the way the se-
lection is performed. This operator was modified in such
a way that after every generation a certain number of sub-
populations are obtained. Hence, VEGA generates a set of
possible solutions with different trade-offs among the ob-
jectives and this set of solutions is found using the Pareto
dominance concept [18]. The basic principle states that a
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Figure 5: Overall results obtained in the exploration process of minimizing memory accesses for different sets of DDT
implementations solutions of Simblob and Vdrift (values normalized to the SLL DDT implementation)

given solution x 1 dominates another solution x2 if and only
if:

- Solution x1 is not worse than solution x2 in any of the
objectives; and

- Solution x1 is strictly better than solution x2 in at least
one of the objectives.

As a consequence of its basic principle, VEGA-based al-
gorithms generate solutions that are locally non-dominated,
but not necessarily globally non-dominated. In fact, VEGA
presents the so-called speciation problem (i.e., we could
have the evolution of solutions within the population which
excel on different objectives). Thus, for our problem with
3 objectives and a population size of M individuals, tree
sub-populations of size M/3 each are generated. These sub-
populations are mixed together to obtain a new population
of size M, where we then apply the GA operators (crossover
and mutation) to refine further the solution, as illustrated in
Figure 3. This process is repeated until no improvement
occurs in any of the possible combinations generated in the
last generation and in any of the target metrics. At this point,
a Pareto’s front of optimal solutions for the different opti-
mization metrics can be generated (see Section 4 for some
examples).

4 Experimental Results

In the first set of experiments, we have used our method-
ology to explore the optimized configuration of DDTs vari-
ables for Simblob [21] (a 3D environment builder) and

Vdrift [22] (a racing simulator). The Pareto’s front with the
major combinations of DDT implementations for Simblob
is presented in Figure 4. This figure shows that the pre-
sented approach using evolutionary computation can pro-
vide a range of possible DDT implementation solutions to
the designer according to the weight defined for each opti-
mization metric (i.e., memory accesses, memory footprint
and energy consumption in our case). Also, our results try-
ing to minimize the metrics of memory accesses or memory
footprint for both applications are shown in Figure 5 and
Figure 6, where the GA-Based Solution represents the
points in the Pareto’s fronts for the target applications that
the exploration returns to the user (see Figure 4). These so-
lutions achieve the minimal value for the explored metrics
(memory footprint or memory accesses, respectively). A
similar graph has been obtained for energy, but with other
different DDTs implementations as optimal results. For
verification purposes, we have implemented the different
DDTs shown in the figures and run the applications with
each of them, which has shown that the results of relative
comparisons between the different DDTs and the solution
obtained by our multi-objective GA-based exploration were
correct for both applications.

The obtained results illustrate that in real-life applica-
tions the solutions found by our multi-objective GA-based
exploration for memory footprint are the best possible DDT
implementations, in comparison with other possible manual
solutions where the 6 main DDTs of Vdrift and all the DDTs
of Simblob are implemented using variations of one DDT
implementation, as it is usually done in STL-based solu-
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Figure 6: Overall results minimizing the memory footprint metric for different sets of DDT implementations solutions of
Simblob and Vdrift (values normalized to the AR DDT implementation)

tions for simplification purposes on handling DDTs. In fact,
our GA-based method uses multiple generations of possible
solutions (5 generations in the case of Simblob and 23 in
the case of Vdrift) to find the correct combination of dif-
ferent DDT implementations for each variable in the two
applications, which is a very time-consuming process for a
designer to manually tune since there is a large set of differ-
ent combinations of DDTs implementations. For instance,
in the case of Vdrift (for 25 DDTs), the best overall so-
lution found with our methodology uses a combination of
DLL, SLL, AR(P),AR, SLL(O) and DLL(O) implementa-
tion. Hence, the presented results show the utility of the pro-
posed methodology for designers since they do not need to
waste any time on implementing and debugging DDTs im-
plementations that are not useful for their final applications
and target metrics, and can just focus on the ones found by
the proposed methodology.

In a second set of experiments we have utilized our ap-
proach to test its exploration speed in comparison to dif-
ferent alternative methods. The results obtained for both
applications for the different tested exploration methods are
shown in Table 2. First, we have compared with an almost
exhaustive exploration, where we have supposed that a de-
signer starts with all DDTs implementations presented in
Section 3.2 already available. Note that we are removing
one of the main issues for designers (and clear benefit on
our side in the first set of experiments), because the coding
and debugging of all variations of DDT implementations is
already a very time-consuming process in the overall ex-
ploration time. Second, as Table 2 depicts, we have also
compared our algorithm with state-of-the-art pruning and

optimization methods for DDT implementations presented
in[11, 12, 2].

In this case several function costs and deep-first and
branch&bound exploration heuristics are used to minimize
overall memory accesses, memory footprint and energy
consumption figures in embedded multimedia applications.

The results in Table 2 outline that the exploration pro-
cess with our method is much faster than the optimiza-
tion process performed using directly the implementations
of DDTs, namely 5 minutes versus 13 hours (156x times
faster) in the case of Simblob and 20 minutes instead of 9
days in the case of Vdrift (648x times faster). In addition,
and more importantly, the proposed GA-based method finds
the optimal solutions of DDT implementations faster than
the compared state-of-the-art DDTs optimization methods
using different heuristics, achieving speed-ups between
16% and 19% for Simblob, and 25% and 29% for Vdrift,
respectively. The main reasons for these improvements are
the use in our methodology of only an initial profiling phase
to characterize the dynamic behavior of the application for
all possible DDTs, and the effective use of the VEGA ex-
ploration method in combination with our analytical models
of DDT implementations to study the inter-dependencies of
variables in the application. Hence, we can prune the de-
sign space in a more effective way than other heuristics.
As a consequence, in few generations of possible sets of
DDT implementations solutions, our GA-based optimiza-
tion method can converge to an optimal solution according
to the concrete user-defined constraints (i.e., memory foot-
print, memory accesses and/or energy consumption).
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DDTs Optimization Methods | Simblob |

Mem. accesses minimization

Exhaustive exploration 13 hours 9 days

Deep-First exploration 7 minutes | 31 minutes

Branch & Bound exploration 6 minutes | 27 minutes

GA-Based proposed method 5 minutes | 20 minutes
(16% gains) | (25% gains)

Mem. footprint minimization

Exhaustive exploration 14 hours 9 days

Deep-First exploration 9 minutes | 37 minutes

Branch & Bound exploration | 6.2 minutes | 28 minutes

GA-Based proposed method 5 minutes | 21 minutes
(19% gains) | (29% gains)

Table 2: Exploration time to minimize memory accesses
or memory footprint of DDT implementations for Sim-
blob and Vdrift using different exhaustive exploration and
heuristic-based optimization methods versus the proposed
multi-objective GA-based approach

5 Conclusions

New embedded devices have increased their capabili-
ties and now complex applications can be ported to them.
Such applications include intensive dynamic memory re-
quirements that must be heavily optimized for an efficient
mapping on embedded devices. To efficiently use dy-
namic memory in this applications, designers need to select
suitable complex DDT implementations (dynamic arrays,
linked lists, etc.) for the variables used in the running ap-
plications with respect to their specific embedded systems
requirements (e.g., performance, memory footprint or en-
ergy consumption).

In this paper we have presented a new multi-objective
optimization method based on evolutionary computation
that can be used to optimize the complex DDTs implemen-
tations from multimedia applications. This method largely
simplifies the exploration effort of multi-layered DDTs for
developers and enables to refine the DDT implementations
in an automated way; As a result, the proposed approach
leads to important savings in overall system integration time
for dynamic applications, while achieving optimal imple-
mentations of DDT structures with respect to key designer’s
metrics (memory footprint, energy consumption and per-
formance). Moreover, our experimental results with two
real-life multimedia embedded applications show that the
presented optimization approach significantly reduces the
exploration time with respect to state-of-the-art methods to
optimize DDTs implementations while still achieving com-
plete Pareto’s fronts of solutions for the considered applica-
tions.

The results obtained so far have outlined other interest-

Vdrift \ ing future research lines in the area of DDT implementation

optimizations using multi-objective evolutionary computa-
tion. Among these lines it is very challenging the study of
the possible benefits of more complex and parallel GAs in
the efficient exploration of the design space of DDT imple-
mentations. Also, for practical reasons in large multimedia
embedded applications with many dynamic variables, the
evaluation of the influence of more complex memory hier-
archies in the suitable pruning process of individuals is a
key research problem to be considered.
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