109 research outputs found

    Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease leading to the death of affected individuals within years. The involvement of inflammation in the pathogenesis of neurodegenerative diseases, including ALS, is increasingly recognized but still not well understood. The aim of this study is to evaluate the levels of inflammation-related IL-1 family cytokines (IL-1β, IL-18, IL-33, IL-37) and their endogenous inhibitors (IL-1Ra, sIL-1R2, IL-18BP, sIL-1R4) in patients with sporadic ALS (sALS), METHODS: Sera were collected from 144 patients (125 patients were characterized by disease form, duration, and disability, using the revised ALS functional rating scale (ALSFRS-R) and from 40 matched controls. Cerebrospinal fluid (CSF) was collected from 54 patients with sALS and 65 patients with other non-infectious non-oncogenic diseases as controls. Cytokines and inhibitors were measured by commercial ELISA. RESULTS: Among the IL-1 family cytokines tested total IL-18, its endogenous inhibitor IL-18BP, and the active form of the cytokine (free IL-18) were significantly higher in the sALS sera than in controls. No correlation between these soluble mediators and different clinical forms of sALS or the clinical setting of the disease was found. IL-18BP was the only mediator detectable in the CSF of patients. CONCLUSIONS: Among the IL-1 family cytokines, only IL-18 correlates with this disease and may therefore have a pathological role in sALS. The increase of total IL-18 suggests the activation of IL-18-cleaving inflammasome. Whether IL-18 upregulation in circulation of sALS patients is a consequence of inflammation or one of the causes of the pathology still needs to be addressed

    Mucosal delivery of anti-inflammatory IL-1Ra by sporulating recombinant bacteria

    Get PDF
    BACKGROUND: Mucosal delivery of therapeutic protein drugs or vaccines is actively investigated, in order to improve bioavailability and avoid side effects associated with systemic administration. Orally administered bacteria, engineered to produce anti-inflammatory cytokines (IL-10, IL-1Ra), have shown localised ameliorating effects in inflammatory gastro-intestinal conditions. However, the possible systemic effects of mucosally delivered recombinant bacteria have not been investigated. RESULTS: B. subtilis was engineered to produce the mature human IL-1 receptor antagonist (IL-1Ra). When recombinant B. subtilis was instilled in the distal colon of rats or rabbits, human IL-1Ra was found both in the intestinal lavage and in the serum of treated animals. The IL-1Ra protein in serum was intact and biologically active. IL-1-induced fever, neutrophilia, hypoglycemia and hypoferremia were inhibited in a dose-dependent fashion by intra-colon administration of IL-1Ra-producing B. subtilis. In the mouse, intra-peritoneal treatment with recombinant B. subtilis could inhibit endotoxin-induced shock and death. Instillation in the rabbit colon of another recombinant B. subtilis strain, which releases bioactive human recombinant IL-1β upon autolysis, could induce fever and eventually death, similarly to parenteral administration of high doses of IL-1β. CONCLUSIONS: A novel system of controlled release of pharmacologically active proteins is described, which exploits bacterial autolysis in a non-permissive environment. Mucosal administration of recombinant B. subtilis causes the release of cytoplasmic recombinant proteins, which can then be found in serum and exert their biological activity in vivo systemically

    Polygenic risk and hazard scores for Alzheimer's disease prediction.

    Get PDF
    OBJECTIVE: Genome-wide association studies (GWAS) have identified over 30 susceptibility loci associated with Alzheimer's disease (AD). Using AD GWAS data from the International Genomics of Alzheimer's Project (IGAP), Polygenic Risk Score (PRS) was successfully applied to predict life time risk of AD development. A recently introduced Polygenic Hazard Score (PHS) is able to quantify individuals with age-specific genetic risk for AD. The aim of this study was to quantify the age-specific genetic risk for AD with PRS and compare the results generated by PRS with those from PHS. METHODS: Quantification of individual differences in age-specific genetic risk for AD identified by the PRS, was performed with Cox Regression on 9903 (2626 cases and 7277 controls) individuals from the Genetic and Environmental Risk in Alzheimer's Disease consortium (GERAD). Polygenic Hazard Scores were generated for the same individuals. The age-specific genetic risk for AD identified by the PRS was compared with that generated by the PHS. This was repeated using varying SNPs P-value thresholds for disease association. RESULTS: Polygenic Risk Score significantly predicted the risk associated with age at AD onset when SNPs were preselected for association to AD at P ≤ 0.001. The strongest effect (B = 0.28, SE = 0.04, P = 2.5 × 10-12) was observed for PRS based upon genome-wide significant SNPs (P ≤ 5 × 10-8). The strength of association was weaker with less stringent SNP selection thresholds. INTERPRETATION: Both PRS and PHS can be used to predict an age-specific risk for developing AD. The PHS approach uses SNP effect sizes derived with the Cox Proportional Hazard Regression model. When SNPs were selected based upon AD GWAS case/control P ≤ 10-3, we found no advantage of using SNP effects sizes calculated with the Cox Proportional Hazard Regression model in our study. When SNPs are selected for association with AD risk at P > 10-3, the age-specific risk prediction results are not significant for either PRS or PHS. However PHS could be more advantageous than PRS of age specific AD risk predictions when SNPs are prioritized for association with AD age at onset (i.e., powerful Cox Regression GWAS study)

    Anti-inflammatory Effects of Homotaurine in Patients With Amnestic Mild Cognitive Impairment

    Get PDF
    Alzheimer’s disease (AD) is a fatal dementing neurodegenerative disease, currently lacking an efficacious disease-modifying therapy. In the last years, there has been some interest in the use of homotaurine as a potential therapeutic compound for AD, but more work is still needed to prove its efficacy as disease modifier in dementia. Since inflammation is believed to play a key role in AD development, we sought to investigate here the in vivo homotaurine effect on inflammatory response in patients at the earliest stages of AD, i.e., suffering from amnestic mild cognitive impairment (aMCI). Thus, the present study aims to evaluate the effects of homotaurine supplementation on cytokine serum levels and memory performances in MCI patients. Neuropsychological, clinical and cytokine assessment was performed at baseline (T0) and after 1 year (T12) of homotaurine supplementation in 20 patients categorized as carriers (n = 9) or no carriers (n = 11) of the ε4 allele of the apolipoprotein E (APOE) gene, the strongest genetic risk factor for AD. The serum levels of the pro-inflammatory mediators Interleukin (IL) 1β, Tumor necrosis factor-alpha (TNFα), IL-6 and IL-18, contextually with the anti-inflammatory molecules IL-18 binding protein (IL-18BP) and Transforming growth factor-beta (TGFβ), were analyzed to explore significant differences in the inflammatory status between T0 and T12 in the two APOE variant carrier groups. No significant differences over time were observed in patients as for most cytokines, except for IL-18. Following homotaurine supplementation, patients carrying the APOEε4 allele showed a significant decrease in IL-18 (both in its total and IL-18BP unbound forms), in turn associated with improved short-term episodic memory performance as measured by the recency effect of the Rey 15-word list learning test immediate recall. Thus, homotaurine supplementation in individuals with aMCI may have a positive consequence on episodic memory loss due, at least in part, to homotaurine anti-inflammatory effects. This study strongly suggests that future research should focus on exploring the mechanisms by which homotaurine controls brain inflammation during AD progression

    Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations

    Get PDF
    Recent genome-wide association studies have identified five loci (BIN1, CLU, CR1, EXOC3L2 and PICALM) as genetic determinants of Alzheimer’s disease (AD). We attempted to confirm the association between these genes and the AD risk in three contrasting European populations (from Finland, Italy and Spain). Since CLU and CR1 had already been analyzed in these populations, we restricted our investigation to BIN1, EXO2CL3 and PICALM. In a total of 2,816 AD cases and 2,706 controls, we unambiguously replicated the association of rs744373 (for BIN1) and rs541458 (for PICALM) polymorphisms with the AD risk (OR=1.26, 95% CI [1.15-1.38], p=2.9x10-7, and OR=0.80, 95% CI [0.74-0.88], p=4.6x10-7, respectively). In a meta-analysis, rs597668 (EXOC3L2) was also associated with the AD risk, albeit to a lesser extent (OR=1.19, 95% CI [1.06-1.32], p=2.0x10-3). However, this signal did not appear to be independent of APOE. In conclusion, we confirmed that BIN1 and PICALM are genetic determinants of AD, whereas the potential involvement of EXOC3L2 requires further investigation

    Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease.

    Get PDF
    Late onset Alzheimer's disease is the most common form of dementia for which about 30 susceptibility loci have been reported. The aim of the current study is to identify novel genes associated with Alzheimer's disease using the largest up-to-date reference single nucleotide polymorphism (SNP) panel, the most accurate imputation software and a novel gene-based analysis approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 million genotypes from 17,008 Alzheimer's cases and 37,154 controls. In addition to earlier reported genes, we detected three novel gene-wide significant loci PPARGC1A (p = 2.2 × 10-6), RORA (p = 7.4 × 10-7) and ZNF423 (p = 2.1 × 10-6). PPARGC1A and RORA are involved in circadian rhythm; circadian disturbances are one of the earliest symptoms of Alzheimer's disease. PPARGC1A is additionally linked to energy metabolism and the generation of amyloid beta plaques. RORA is involved in a variety of functions apart from circadian rhythm, such as cholesterol metabolism and inflammation. The ZNF423 gene resides in an Alzheimer's disease-specific protein network and is likely involved with centrosomes and DNA damage repair
    corecore