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Abstract

Late onset Alzheimer’s disease is the most common form of dementia for which about 30

susceptibility loci have been reported. The aim of the current study is to identify novel genes

associated with Alzheimer’s disease using the largest up-to-date reference single nucleotide

polymorphism (SNP) panel, the most accurate imputation software and a novel gene-based

analysis approach which tests for patterns of association within genes, in the powerful

genome-wide association dataset of the International Genomics of Alzheimer’s Project Con-

sortium, comprising over 7 million genotypes from 17,008 Alzheimer’s cases and 37,154

controls. In addition to earlier reported genes, we detected three novel gene-wide significant

loci PPARGC1A (p = 2.2 × 10−6), RORA (p = 7.4 × 10−7) and ZNF423 (p = 2.1 × 10−6).

PPARGC1A and RORA are involved in circadian rhythm; circadian disturbances are one of

the earliest symptoms of Alzheimer’s disease. PPARGC1A is additionally linked to energy

metabolism and the generation of amyloid beta plaques. RORA is involved in a variety of

functions apart from circadian rhythm, such as cholesterol metabolism and inflammation.

The ZNF423 gene resides in an Alzheimer’s disease-specific protein network and is likely

involved with centrosomes and DNA damage repair.

Introduction

Late Onset Alzheimer’s disease (LOAD) is a devastating neurodegenerative condition with sig-

nificant genetic heritability [1]. The apolipoprotein E (APOE) gene is the strongest genetic risk

factor for LOAD [2]. Subsequently, more genes were found to be associated with AD develop-

ment. The Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) Consortium

published a Genome-Wide Association Study (GWAS) that identified novel variants in CLU
and PICALM which were associated with AD [3]. Concurrently, the European Alzheimer’s

Disease Initiative (EADI) identified an association between the CR1 and CLU loci and AD [4].

Subsequent publications by GERAD, the Alzheimer’s Disease Genetic Consortium (ADGC)

and Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consor-

tium identified a further 5 novel loci [5] [6] [7]. The International Genomics of Alzheimer’s

Project (IGAP) [4] Consortium is an amalgamation of these four different genetic groups

(GERAD, EADI, ADGC and CHARGE). Meta-analysis of the 4 GWAS datasets determined 11

novel variants associated with AD. A gene-based analysis has been undertaken in the IGAP

AD data using Brown’s method [8]. This approach determined two additional novel genes;

TP53INP1 and IGHV1-67 [9]. Additionally, low frequency risk variants have been identified

through next generation sequencing (TREM2) [10] and a whole-exome association study

(PLCG2, TREM2 and ABI3 [11]).

Gene-based analysis is an alternative to GWAS analyses, which considers the association of

an individual single nucleotide polymorphism (SNP) with disease. Gene-based analyses pro-

vide more power due to the aggregate effect of multiple SNPs being larger than that of individ-

ual SNPs. For example, determining the association of genes rather than SNPs, is beneficial

since genes are more robust across different populations, this is due to the linkage disequilib-

rium (LD) between SNPs resulting in different SNPs being associated in different populations

[12]. Gene-based analyses are being widely used in the field and as expected, are able to identify

novel genes or pathways associated with disease. Pathways clustering in eight areas of biology

have been found to be associated with AD using the ALIGATOR [13] algorithm [14] [15].
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The aim of the current study is to identify novel genes associated with AD using the largest

up-to-date reference SNP panel, the most accurate imputation software and a novel gene-

based analysis approach. In this study, we used the GERAD data [3] which have been imputed

using the latest Haplotype Reference Consortium data (HRC). Polygenic Linkage disequilib-

rium- Adjusted Risk Score (POLARIS) [16] is a powerful gene-based method which produces

a risk score per person per gene, adjusts for LD between SNPs and informs the analysis with

summary statistics from an external data set. POLARIS, unlike standard Polygenic Risk Score

(PRS) does not require data to be pruned for LD prior to analysis, so it is able to incorporate

information from a larger number of SNPs. We employed the POLARIS approach [16] and

using the individual genotypes in the GERAD imputed data, produced the risk score for each

individual for every gene considered. The IGAP [4] SNP summary statistic data, where the

individuals from GERAD were excluded, were used to generate the gene-based PRS.

Results

For the imputed GERAD data, using a window around the gene of 35kb upstream and 10kb

downstream [17], SNPs are assigned to 18,087 genes which are plotted on a Manhattan plot in

Fig 1. The 12 gene-wide significant genes from this analysis are shown in Table 1, where gene-

wide significance is defined as p< 2.5 × 10−6 [18]. A large number of genes reside on chromo-

some 19 and these are likely influenced by the large effect of APOE. Three novel genes have

been identified from this analysis: PPARGC1A, RORA and ZNF423. PPARGC1A (peroxisome

proliferator-activated receptor gamma co-activator 1alpha) is a master regulator that mainly

regulates energy metabolism [19] [20]. It has been linked to the generation of amyloid beta

plaques [21] and circadian rhythm [22]. RORA (Retinoic acid receptor-related orphan recep-

tor alpha) is involved in a variety of functions such as circadian rhythm, cholesterol metabo-

lism and inflammation [23]. Its expression is also upregulated in the AD hippocampus [24].

The ZNF423 gene resides in an AD-specific protein network which also includes other AD-

related genes such as APOE, CLU, ABCA7, TREM2 etc. [25]. ZNF423 is likely involved with

centrosomes and DNA damage repair [26]. The SCARA3 gene overlaps CLU which has previ-

ously been identified as being associated with AD [3] [4]. The POLARIS gene-based results for

the genes previously identified as being associated with AD are seen in S1 Table, these genes

contain genome-wide significant SNPs (p< 5 × 10−8). Table 1 additionally shows the

POLARIS gene-based results conditioned on the APOE gene, this is done by including the

POLARIS APOE gene risk score into the logistic regression model. ZNF423 conditioned on

APOE no longer reaches gene-wide significance, but PPARGC1A and RORA remain signifi-

cant, suggesting an association independent of APOE. In addition, BCAM, PVRL2 and

APOC4-APOC2 on chromosome 19 remain gene-wide significant, even after adjusting for

APOE in the model, suggesting a potential signal beyond APOE. To investigate this, we addi-

tionally conditioned on BCAM (the most significant chromosome 19 gene after adjusting for

APOE) to determine whether this explains the remaining effect. Results are shown in S2 Table;

when conditioning on APOE and BCAM the only remaining gene-wide significant gene on

chromosome 19 is APOC4-APOC2, suggesting that the majority of signals on chromosome 19

are explained by APOE and BCAM. We were unable to condition on APOE genotype since

these are not available for all subjects, so removal of an association may be due to reduced

sample size.

In order to narrow down the disease-associated SNPs for each of these novel genes, we

investigated the gene expression patterns using the BRAINEAC [27] database from the UK

Brain Expression Consortium. For the PPARGC1A gene the SNP rs67436520, which is down-

stream of the PPARGC1A gene, has the best cis-expression quantitative trait loci (eQTL) p-
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value of 3.3 × 10−4, this is expressed in the hippocampus. The best cis-eQTL p-value in the

RORA gene is 1.5 × 10−4, this is for SNP rs113223478 which is 78.5kb upstream of the gene,

between the NARG2 and ANXA2 genes, and is expressed in the substantia nigra. This SNP

will not be included in the POLARIS score, however, it could be tagged by SNPs included in

the score. Finally, SNP rs2270396 has the best cis-eQTL p-value in the ZNF423 gene with a p-

value of 3.0 × 10−5 and is expressed in the frontal cortex. These SNPs were checked in Regulo-

meDB [28] and Variant Effect Predictor [29]. They are all intergenic variants that are not in

Fig 1. Manhattan Plot for the POLARIS Gene-Based Analysis in Imputed GERAD Data Using a Gene Window 35kb Upstream and 10kb Downstream.

https://doi.org/10.1371/journal.pone.0218111.g001
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any well-defined regulatory region of the genome and do not overlap the best risk SNPs, so it

is difficult to predict how these SNPs may affect the regulation of the expression of these

genes.

Discussion

A gene-based analysis was performed using the individual genotypes in the GERAD imputed

data and the summary statistics from IGAP data excluding the GERAD subjects was used to

inform the analysis. This analysis expands a gene window around the gene, 35kb upstream

and 10kb downstream, which is likely to include transcriptional regulatory elements in the

gene [17] and thus contain SNPs influencing gene expression. Three novel genes were found

to be associated with AD using the POLARIS method. The novel genes are PPARGC1A, RORA
and ZNF423, all of which have credible biological relevance to AD. These results are already

adjusted for LD between SNPs in the gene, using the POLARIS methodology. Most of the

genes identified before in IGAP data [4] [9] were also identified by POLARIS as statistically

significant, however, since previous results are based on IGAP stages 1 and 2, POLARIS p-val-

ues were slightly larger.

We investigated disease-associated SNPs using expression patterns, which highlighted indi-

vidual SNPs. A limitation of this analysis is that the POLARIS score tests the aggregated risk

across the gene and is unlikely due to a single SNP.

The product of the PPARGC1A gene, PGC-1α (Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha) is part of the PGC-1 family of transcriptional coactivators that

mainly regulate mitochondrial biogenesis to in turn regulate the cellular energy metabolism

[19]. It is also involved in other cellular and physiological functions, including the response to

a variety of cellular and external stimuli, cellular glucose homeostasis, circadian rhythm, and

the regulation of neuronal apoptosis.

The regulation of this gene is complex; it has multiple isoforms and alternative promoters

[30] and gene expression is regulated by a variety of stimuli, including cytokines, insulin, exer-

cise and the cold [31]. PGC-1α can induce ribosomal transcription under stress conditions

such as oxidative stress and exercise [32].

Previous animal model work has shown that overexpression of hPGC-1α in APP23 mice

improved spatial and recognition memory, along with a significant reduction of Aβ deposition

Table 1. Gene-Wide Significant Genes from POLARIS Gene-based Analysis in GERAD Imputed Data Using a Gene Window (35kb Upstream and 10kb

Downstream).

POLARIS POLARIS, conditioned on APOE
Chr Gene No. of SNPs Beta SE P-value Beta SE P-value

4 PPARGC1A 480 0.877 0.1851 2.2 × 10−6 0.920 0.1885 1.0 × 10−6

8 SCARA3 (CLU) 240 0.526 0.1064 7.8 × 10−7 0.537 0.1090 8.3 × 10−7

15 RORA 1813 0.334 0.0674 7.4 × 10−7 0.338 0.0688 9.1 × 10−7

16 ZNF423 1056 0.551 0.1163 2.1 × 10−6 0.541 0.1187 5.1 × 10−6

19 BCL3 88 0.377 0.0674 4.2 × 10−9 0.291 0.0656 8.8 × 10−6

19 CBLC 50 0.605 0.1161 1.8 × 10−7 0.455 0.1183 0.00012

19 BCAM 71 0.556 0.0543 1.4 × 10−24 0.492 0.0555 7.6 × 10−19

19 PVRL2 160 0.546 0.0299 9.4 × 10−75 0.430 0.0491 2.0 × 10−18

19 TOMM40 108 0.500 0.0298 3.4 × 10−63 0.334 0.0891 0.00018

19 APOE 55 0.520 0.0315 4.4 × 10−61 NA NA NA

19 APOC1 34 0.475 0.0315 1.5 × 10−51 -0.249 0.1031 0.01575

19 APOC4-APOC2 62 0.615 0.0871 1.6 × 10−12 0.419 0.0892 2.5 × 10−6

https://doi.org/10.1371/journal.pone.0218111.t001
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[21]. Furthermore, hPGC-1α overexpression also reduced the levels of proinflammatory cyto-

kines and microglial activation [21] [33]. This suggests a direct link with recent genetic evi-

dence of microglia-mediated innate immune response involvement in AD [11]. In addition,

activation of PGC-1α by EKR and p38 inhibitors have been shown to improve spatial and

learning memory in Aβ-injected rats [34]. PPARGC1A has also been implicated in the patho-

genesis of other neurodegenerative disorders, namely Huntington’s and Parkinson’s diseases

[35]. It has been shown that mutated Huntingtin represses PGC-1α, affecting mitochondrial

function, hence ribosomal biogenesis may be affected in Huntington’s disease [36]. There is a

brain specific promoter 587kb upstream of human PPARGC1A [37], which is located in a

genomic region associated with age of onset of Huntington’s disease and relevant here is that

hippocampal PGC-1α expression is decreased in the AD brain [38]. A randomised controlled

trial of a PPAR-γ agonist, pioglitazone, found improved cognition and regional cerebral blood

flow in patients with mild AD [39].

RORA (Retinoic acid receptor-related orphan receptor alpha) is a nuclear hormone recep-

tor with diverse cellular roles [40], for example in immunity, cerebellum development [41],

lipid metabolism [42], circadian rhythms and inflammation [23]. RORA regulates its target

genes by binding to the ROR response elements (RORE) in the gene regulatory region [43]. It

has been shown to regulate more than 3,000 genes in human monocytic and endothelial cell

lines [44]. It has a role in the regulation of the BDNF pathway and its expression is upregu-

lated in AD hippocampus [24]. RORA and PPARGC1A are close biological partners, with

PGC-1α regulating the expression of a number of clock genes through the coactivation of the

ROR family of orphan nuclear receptors [45]. RORA has been shown to be linked to other

genes previously implicated in AD [25] and also has been implicated in a large number of neu-

ropsychiatric disorders, such as post-traumatic stress disorder [46] [47] and autism [48]. Fur-

thermore, RORA trans-activates IL-6 and is thought to be neuro-protective in astrocytes and

anti-inflammatory in peripheral tissues [49]. The two genes, RORA and PPARGC1A that we

report here provide further evidence of the involvement of inflammation in the pathogenesis

of AD.

Finally, ZNF423 is a nuclear protein that belongs to the Kruppel-like C2H2 zinc finger pro-

teins. ZNF423 directs bone morphogenetic protein (BMP)-dependent signalling activity and

aberrant forms impede B cell differentiation [50]. Furthermore, elevated gene-expression of

ZNF423 has been shown to occur in patients with systemic lupus erythematosus, pointing to

an impaired function of B cells in human mesenchymal stem cells [51]. ZNF423 resides in an

AD-specific protein network [25]. ZNF423 is likely involved with centrosomes and DNA

damage repair [26]. It is downregulated in human neuroblastoma and glioma [52] [53] and

also has a role in breast cancer [54]. Previously, it also has been shown that missense and LoF

variants are likely to be pathogenic for abnormality of brain morphology, Joubert syndrome

and Nephronophthisis with autosomal dominant or autosomal recessive inheritance (www.

omim.org, https://www.ncbi.nlm.nih.gov/clinvar/). These disorders present with a range of

phenotypic characteristics, with the central nervous system being affected too (more specifi-

cally the cerebellar vermis). In nur12 mouse model (with introduced nonsense mutation in

exon 4 of the mouse Zfp423 gene), Alcaraz et al. [55] observed loss of the corpus callosum,

reduction of hippocampus, and a malformation of the cerebellum reminiscent of patients

with Dandy-Walker syndrome. Within the cerebellum, Zfp423 was observed to be expressed

in both ventricular and external germinal zones. Loss of Zfp423 was also observed to lead

to diminished proliferation by granule cell precursors in the external germinal layer and

abnormal differentiation and migration of ventricular zone-derived neurons and Bergmann

glia [55].
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Conclusion

POLARIS is a gene-based analysis which produces a genetic risk score per individual per gene,

whilst adjusting for LD between SNPs in the gene. This methodology was applied to the latest

HRC imputation of the GERAD data, and the summary statistics from IGAP (excluding

GERAD subjects) were used as weights in the score. This led to the identification of 3 novel

genes associated with AD; these genes are PPARGC1A, RORA and ZNF423. There is evidence

that these genes are credible candidates in AD, with PPARGC1A and RORA being linked to

circadian rhythm, PPARGC1A is implicated in energy metabolism and the generation of amy-

loid plaques, RORA is linked to cholesterol metabolism and inflammation and ZNF423 is likely

involved in DNA damage repair and resides in an AD-specific protein network.

Materials and methods

The Haplotype Reference Consortium (HRC), version r1.1 2016, was used to impute GERAD

genotype data on the Michigan Imputation Server [56], which to date, allows the most accurate

imputation of genetic variants. Imputed genotype probabilities (also known as dosages) were

converted to the most probable genotype with a probability threshold of 0.9 or greater. SNPs

were removed if: their imputation INFO-score< 0.4, minor allele frequency (MAF)< 0.01,

missingness of genotypes� 0.05 or HWE< 10−6. A total of 6,119,694 variants were retained.

To correct for population structure and genotyping differences, all analyses were adjusted for

age, gender and the top 3 principal components.

POLARIS was applied to this GERAD (3,332 cases, 9,832 controls; see S3 Table for cohort

details) imputed data, using the IGAP [4] data (17,008 cases, 37,154 controls) excluding

GERAD subjects (IGAPnoGERAD) as an external dataset to derive weights from the

best powered data set avaliable. The IGAP data was imputed using a previous reference

panel (1000 genomes, Dec 2010 release). There were 3,169,839 SNPs in common between

imputed GERAD and IGAP summary statistics data. The GERAD imputed data contain

individual genotypes for every SNP, enabling the production of a risk score per person per

gene, and the IGAPnoGERAD data contains effect sizes for every SNP, which are used to

weight the risk score. A gene-based risk score was produced for every individual in the

GERAD data.

POLARIS adjusts for LD between SNPs and therefore, the SNPs were not pruned for LD

and the entire data were used in this analysis. POLARIS adjusts for LD by using spectral

decomposition of the correlation matrix between SNPs. Such a matrix was derived for each

gene using the individual genotypes from the GERAD imputed data. It was ensured that SNPs

had consistent reference alleles across both independent datasets; IGAPnoGERAD and

imputed GERAD. If alleles in IGAPnoGERAD were coded in the opposite direction to those

in GERAD, the summary effect size for the SNP was inverted. SNPs with alleles AT, TA, CG or

GC were excluded.

SNPs were assigned to genes using GENCODE (v19) gene models [57]. Only genes with

known gene status and those marked as protein coding were used. A gene window containing

SNPs which were within 35kb upstream and 10kb downstream of the gene was considered.

This window was used since it is likely to contain transcriptional regulatory elements [17].

SNPs which belong to multiple genes were assigned to all those genes. In the HRC imputed

GERAD data, 2,296,690 SNPs were assigned to 18,087 genes.

A POLARIS score was produced for each of these genes, and the overall association of the

gene with AD is determined using a logistic regression model, adjusting for population covari-

ates, age and sex.
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