509 research outputs found

    Passiv damping on spacecraft sandwich panels

    Get PDF
    For reusable and expendable launch vehicles as well as for other spacecraft structural vibration loads are safety critical design drivers impacting mass and lifetime. Here, the improvement of reliability and safety, the reduction of mass, the extension of service life, as well as the reduction of cost for manufacturing are desired. Spacecraft structural design in general is a compromise between lightweight design and robustness with regard to dynamic loads. The structural stresses and strains due to displacements caused by dynamic loads can be reduced by mechanical damping based on passive or active measures. Passive damping systems can be relatively simple and yet are capable of suppressing a wide range of mechanical vibrations. Concepts are low priced in development, manufacturing and application as well as maintenancefree. Compared to active damping measures passive elements do not require electronics, control algorithms, power, actuators, sensors as well as complex maintenance. Moreover, a reliable application of active dampers for higher temperatures and short response times (e. g. re-entry environment) is questionable. The physical effect of passive dampers is based on the dissipation of load induced energy. Recent activities performed by OHB have shown the function of a passive friction-damping device for a vertical tail model of the German X-vehicle PHÖNIX but also for general sandwich structures. The present paper shows brand new results from a corresponding ESA-funded activity where passive damping elements are placed between the face sheets of large spacecraft relevant composite sandwich panels to demonstrate dynamic load reduction in vibration experiments on a shaker. Several passive damping measures are investigated and compared

    Detecting negative ions on board small satellites

    Full text link
    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury’s space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.Key PointsSurface interactions with dust grains in the heliosphere and near the moon can produce anionsThe contribution of anions to the heliosphere and lunar environment is largely unknownAIPS is a small compact, yet capable anion sensor for use on small satellitesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137433/1/jgra53416_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137433/2/jgra53416.pd

    Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome

    Get PDF
    Polycomb group (PcG) proteins belonging to the polycomb (Pc) repressive complexes 1 and 2 (PRC1 and PRC2) maintain homeotic gene silencing. In Drosophila, PRC2 methylates histone H3 on lysine 27, and this epigenetic mark facilitates recruitment of PRC1. Mouse PRC2 (mPRC2) has been implicated in X inactivation, as mPRC2 proteins transiently accumulate on the inactive X chromosome (Xi) at the onset of X inactivation to methylate histone H3 lysine 27 (H3-K27). In this study, we demonstrate that mPRC1 proteins localize to the Xi, and that different mPRC1 proteins accumulate on the Xi during initiation and maintenance of X inactivation in embryonic cells. The Xi accumulation of mPRC1 proteins requires Xist RNA and is not solely regulated by the presence of H3-K27 methylation, as not all cells that exhibit this epigenetic mark on the Xi show Xi enrichment of mPRC1 proteins. Our results implicate mPRC1 in X inactivation and suggest that the regulated assembly of PcG protein complexes on the Xi contributes to this multistep process

    In-situ measurement of texture development rate in CaIrO₃ post-perovskite

    Get PDF
    The rate of crystallographic preferred orientation (CPO) development during deformation of post-perovskite is crucial in interpreting seismic anisotropy in the lowermost mantle but the stability field of MgSiO3 post-perovskite prevents high-strain deformation experiments being performed on it. Therefore, to constrain the rate of CPO development in post-perovskite, we deformed CaIrO3, a low-pressure analogue of MgSiO3 post-perovskite, in simple shear at 3.2GPa and 400○C to a shear strain (γ) of 0.81. From X-ray diffraction patterns acquired during deformation, we invert for CPO as a function of strain. By comparing the CPO that develops with visco-plastic self-consistent (VPSC) models we constrain the critical resolved shear stresses (CRSS) of the non-primary slip-systems in CaIrO3 to be of order 6 times stronger than the primary [100](010) slip system. This value is significantly less than has been assumed by previous studies and if applicable to MgSiO3 implies that seismic anisotropy in the D′ layer develops slower than has previously been assumed

    Understanding the errors of SHAPE-directed RNA structure modeling

    Full text link
    Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011

    Seasonal Variations of Seismic Activity on Mars?

    Get PDF
    We analyze the sequence of seismic events of different types as recorded by the SEIS instrument of the InSight mission. After several weeks without any detection, event counts started to increase at the end of May 2019. The majority of recorded events belongs to the class of 2.4 Hz events, which prominently excite a continuously observed natural resonance frequency. Comparison with expected event counts from a constant-rate Poisson process shows a repeated, step wise increase of the event rate with time. At the same time, event amplitudes, and hence magnitudes, are found to increase as well
    • …
    corecore