

Lunar seismology enabled by a Lunar Orbital Platform - Gateway

Feb. 28, 2018

Renee Weber, NASA Marshall Space Flight Center

C. R. Neal, University of Notre Dame

S. Kedar, M. Panning, B. Banerdt, NASA Jet Propulsion Laboratory

N. C. Schmerr, University of Maryland, College Park

M. Siegler, Planetary Science Institute, Southern Methodist University

Instrument Function Statement and Gateway Usage

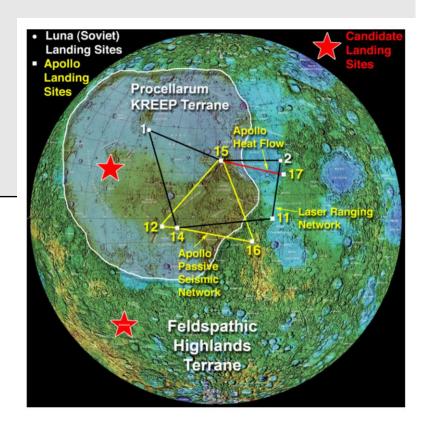
STATEMENT

INSTRUMENT/CONCEPT DETAILS

FUNCTION STATEMENT

Deploy a long-lived network of stationary seismometers to the surface to monitor for seismic shaking induced by artificial sources, natural tectonism and meteorite impacts.

Science objectives:


- Quantify the amount and distribution of seismicity
- Determine the detailed structure of the crust, mantle, and core

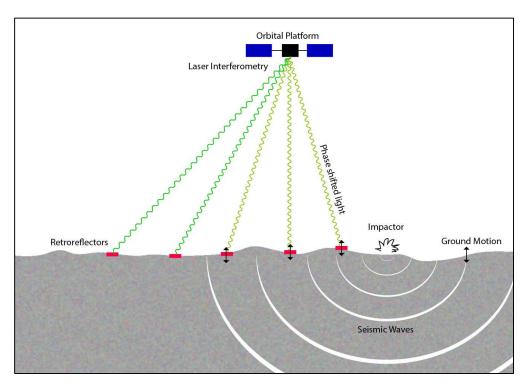
WHY IS THE GATEWAY THE OPTIMAL FACILITY FOR THIS INSTRUMENT/RESEARCH?

Lunar seismology is optimally enabled by a Gateway architecture that incorporates a reusable lunar lander/ascent vehicle that can deploy identical instrumentation at globally distributed locations

Gateway can enable seismologyenhancing observations:

- Penetrators
- Active source release
- Laser interferometry
- Surface monitoring (including high-resolution imaging, impact flashes, SAR, altimetry)

Two basic concepts



Surface geophysical packages

"releaseables"

vs. Gateway external payloads

Basic Instrument Parameters – assuming surface geophysical package

PARAMETER	ILN (SOLAR/BATTERY)	ILN (ASRG)	Future	
MASS (KG)	25	30	<50kg (commercial?)	
VOLUME (M)	-	-	-	
POWER (W)	19.5 day / 7.8 night	Up to 74	-	
THERMAL REQUIREMENTS	Night survival required (±50°C operating)			
DAILY DATA VOLUME	~hundreds MB/day raw data generated (amount downlinked depends on comm. availability)			
CURRENT TRL	TRL 4-6 for notional payload instruments			
WAG COST & BASIS	2 stations under Discovery /	4 stations under New Frontiers	New Frontiers	
DURATION OF EXPERIMENT	6 years	6 years	10 years	
OTHER PARAMETERS	-	-	-	

DEEP SPACE GATEWAY CONCEPT SCIENCE WORKSHOP | FEBRUARY 27-MARCH 1, 2018

Instrument Gateway Usage – "releaseables" (landers, penetrators, etc.)

USAGE	INSTRUMENT REQUIREMENTS & COMMENTS	
ORBIT CONSIDERATIONS	Appropriate for release of autonomous assets to lunar surface	
FIELD OF VIEW REQUIREMENTS	N/A JPL LUNETTE mission concept	
REQUIRES USE OF AIRLOCK	N/A	
CREW INTERACTION REQUIRED?	N/A	
WILL ASTRONAUT PRESENCE BE DISRUPTIVE?	N/A	
DOES THE INSTRUMENT PRESENT A RISK TO THE CREW	N/A	
OTHER CONSUMABLES REQUIRED	N/A	
SPECIAL SAMPLE HANDLING REQUIREMENTS	N/A	
NEED FOR TELEROBOTICS?	Possible use of arm or other deployment mech. for asset release	
OTHER REQUIREMNTS OF THE GATEWAY?	Far-side stations would require comm. relay.	

Instrument Gateway Usage – external payloads (imagers, lasers, etc.)

USAGE	INSTRUMENT REQUIREMENTS & COMMENTS	
ORBIT CONSIDERATIONS	Stable LLO (lasers/LROC); L2 halo for far-side impact flash monitoring	
FIELD OF VIEW REQUIREMENTS	N/A	Orbital Platform
REQUIRES USE OF AIRLOCK	N/A	Laser Interferometry Physics Militage Ingline
CREW INTERACTION REQUIRED?	N/A	
WILL ASTRONAUT PRESENCE BE DISRUPTIVE?	possibly	
DOES THE INSTRUMENT PRESENT A RISK TO THE CREW	N/A	Retroreflectors Ground Motion
OTHER CONSUMABLES REQUIRED	N/A	
SPECIAL SAMPLE HANDLING REQUIREMENTS	N/A	Seismic Waves
NEED FOR TELEROBOTICS?	Possible for instru	ument pointing and stability
OTHER REQUIREMNTS OF THE GATEWAY?	N/A	

References and Status of Work in this Field

Background information and science drivers:

- 1) International Lunar Network Final Report https://sservi.nasa.gov/wp-content/uploads/drupal/ILN_Final_Report.pdf
- 2) LUNETTE: A Discovery-class Lunar Geophysical Network concept: https://www.lpi.usra.edu/meetings/lpsc2010/pdf/2710.pdf
- 3) Enabling technologies: https://www.hou.usra.edu/meetings/V2050/pdf/8143.pdf

Status of current development efforts:

- 4) Penetrator concept (LUNAR-A heritage): https://www.sciencedirect.com/science/article/pii/S0032063308004170
- 5) Impact flash monitoring: https://www.hou.usra.edu/meetings/deepspace2018/pdf/3031.pdf
- 6) Laser retroreflectors: https://www.hou.usra.edu/meetings/leag2017/pdf/5070.pdf
- 7) Planetary Broadband Seismometer: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/263006
- 8) Seismometer to investigate ice and ocean structure: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/259995
- 9) Magnetometer: https://www.hou.usra.edu/meetings/deepspace2018/pdf/3173.pdf
- 10) Heat flow probe: https://www.hou.usra.edu/meetings/deepspace2018/pdf/3009.pdf

InSight-leveraging:

- 11) VBB
- 12) SP
- 13) HP³