153 research outputs found

    Covariance of Antiproton Yield and Source Size in Nuclear Collisions

    Full text link
    We confront for the first time the widely-held belief that combined event-by-event information from quark gluon plasma signals can reduce the ambiguity of the individual signals. We illustrate specifically how the measured antiproton yield combined with the information from pion-pion HBT correlations can be used to identify novel event classes.Comment: 8 pages, 5 figures, improved title, references and readability; results unchange

    Anharmonic collective excitation in a solvable model

    Get PDF
    We apply the time-dependent variational principle, the nuclear field theory, and the boson expansion method to the Lipkin model to discuss anharmonicities of collective vibrational excitations. It is shown that all of these approaches lead to the same anharmonicity to leading order in the number of particles. Comparison with the exact solution of the Lipkin model shows that these theories reproduce it quite well.Comment: RevTex, 18 pages, 4 postscript figure

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    Effects of serelaxin in patients with acute heart failure

    Get PDF
    Background: Serelaxin is a recombinant form of human relaxin-2, a vasodilator hormone that contributes to cardiovascular and renal adaptations during pregnancy. Previous studies have suggested that treatment with serelaxin may result in relief of symptoms and in better outcomes in patients with acute heart failure. Methods: In this multicenter, double-blind, placebo-controlled, event-driven trial, we enrolled patients who were hospitalized for acute heart failure and had dyspnea, vascular congestion on chest radiography, increased plasma concentrations of natriuretic peptides, mild-to-moderate renal insufficiency, and a systolic blood pressure of at least 125 mm Hg, and we randomly assigned them within 16 hours after presentation to receive either a 48-hour intravenous infusion of serelaxin (30 μg per kilogram of body weight per day) or placebo, in addition to standard care. The two primary end points were death from cardiovascular causes at 180 days and worsening heart failure at 5 days. Results: A total of 6545 patients were included in the intention-to-treat analysis. At day 180, death from cardiovascular causes had occurred in 285 of the 3274 patients (8.7%) in the serelaxin group and in 290 of the 3271 patients (8.9%) in the placebo group (hazard ratio, 0.98; 95% confidence interval [CI], 0.83 to 1.15; P=0.77). At day 5, worsening heart failure had occurred in 227 patients (6.9%) in the serelaxin group and in 252 (7.7%) in the placebo group (hazard ratio, 0.89; 95% CI, 0.75 to 1.07; P=0.19). There were no significant differences between the groups in the incidence of death from any cause at 180 days, the incidence of death from cardiovascular causes or rehospitalization for heart failure or renal failure at 180 days, or the length of the index hospital stay. The incidence of adverse events was similar in the two groups. Conclusions: In this trial involving patients who were hospitalized for acute heart failure, an infusion of serelaxin did not result in a lower incidence of death from cardiovascular causes at 180 days or worsening heart failure at 5 days than placebo. (Funded by Novartis Pharma; RELAX-AHF-2 ClinicalTrials.gov number, NCT01870778. opens in new tab.

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV
    corecore