71 research outputs found

    Increase in the prevalence of mutations associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates collected from early to late pregnancy in Nanoro, Burkina Faso.

    Get PDF
    BACKGROUND: Pregnant women are a high-risk group for Plasmodium falciparum infections, which may result in maternal anaemia and low birth weight newborns, among other adverse birth outcomes. Intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy (IPTp-SP) is widely implemented to prevent these negative effects of malaria. However, resistance against SP by P. falciparum may decrease efficacy of IPTp-SP. Combinations of point mutations in the dhps (codons A437, K540) and dhfr genes (codons N51, C59, S108) of P. falciparum are associated with SP resistance. In this study the prevalence of SP resistance mutations was determined among P. falciparum found in pregnant women and the general population (GP) from Nanoro, Burkina Faso and the association of IPTp-SP dosing and other variables with mutations was studied. METHODS: Blood spots on filter papers were collected from pregnant women at their first antenatal care visit (ANC booking) and at delivery, from an ongoing trial and from the GP in a cross-sectional survey. The dhps and dhfr genes were amplified by nested PCR and products were sequenced to identify mutations conferring resistance (ANC booking, n = 400; delivery, n = 223; GP, n = 400). Prevalence was estimated with generalized estimating equations and for multivariate analyses mixed effects logistic regression was used. RESULTS: The prevalence of the triple dhfr mutation was high, and significantly higher in the GP and at delivery than at ANC booking, but it did not affect birth weight. Furthermore, quintuple mutations (triple dhfr and double dhps mutations) were found for the first time in Burkina Faso. IPTp-SP did not significantly affect the occurrence of any of the mutations, but high transmission season was associated with increased mutation prevalence in delivery samples. It is unclear why the prevalence of mutations was higher in the GP than in pregnant women at ANC booking. CONCLUSION: The high number of mutants and the presence of quintuple mutants in Burkina Faso confirm concerns about the efficacy of IPTp-SP in the near future. Other drug combinations to tackle malaria in pregnancy should, therefore, be explored. An increase in mutation prevalence due to IPTp-SP dosing could not be confirmed

    Evaluation of Malaria Screening during Pregnancy with Rapid Diagnostic Tests Performed by Community Health Workers in Burkina Faso.

    Get PDF
    One of the current strategies to prevent malaria in pregnancy is intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP). However, in order for pregnant women to receive an adequate number of SP doses, they should attend a health facility on a regular basis. In addition, SP resistance may decrease IPTp-SP efficacy. New or additional interventions for preventing malaria during pregnancy are therefore warranted. Because it is known that community health workers (CHWs) can diagnose and treat malaria in children, in this study screening and treatment of malaria in pregnancy by CHWs was evaluated as an addition to the regular IPTp-SP program. CHWs used rapid diagnostic tests (RDTs) for screening and artemether-lumefantrine was given in case of a positive RDT. Overall, CHWs were able to conduct RDTs with a sensitivity of 81.5% (95% confidence interval [CI] 67.9-90.2) and high specificity of 92.1% (95% CI 89.9-93.9) compared with microscopy. After a positive RDT, 79.1% of women received artemether-lumefantrine. When treatment was not given, this was largely due to the woman being already under treatment. Almost all treated women finished the full course of artemether-lumefantrine (96.4%). In conclusion, CHWs are capable of performing RDTs with high specificity and acceptable sensitivity, the latter being dependent on the limit of detection of RDTs. Furthermore, CHWs showed excellent adherence to test results and treatment guidelines, suggesting they can be deployed for screen and treat approaches of malaria in pregnancy

    Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries.

    Get PDF
    BACKGROUND: Plasmodium falciparum prevalence (PfPR) is a widely used metric for assessing malaria transmission intensity. This study was carried out concurrently with the RTS,S/AS01 candidate malaria vaccine Phase III trial and estimated PfPR over ≤ 4 standardized cross-sectional surveys. METHODS: This epidemiology study (NCT01190202) was conducted in 8 sites from 6 countries (Burkina Faso, Gabon, Ghana, Kenya, Malawi, and Tanzania), between March 2011 and December 2013. Participants were enrolled in a 2:1:1 ratio according to age category: 6 months-4 years, 5-19 years, and ≥ 20 years, respectively, per year and per centre. All sites carried out surveys 1-3 while survey 4 was conducted only in 3 sites. Surveys were usually performed during the peak malaria parasite transmission season, in one home visit, when medical history and malaria risk factors/prevention measures were collected, and a blood sample taken for rapid diagnostic test, microscopy, and haemoglobin measurement. PfPR was estimated by site and age category. RESULTS: Overall, 6401 (survey 1), 6411 (survey 2), 6400 (survey 3), and 2399 (survey 4) individuals were included in the analyses. In the 6 months-4 years age group, the lowest prevalence (assessed using microscopy) was observed in 2 Tanzanian centres (4.6% for Korogwe and 9.95% for Bagamoyo) and Lambaréné, Gabon (6.0%), while the highest PfPR was recorded for Nanoro, Burkina Faso (52.5%). PfPR significantly decreased over the 3 years in Agogo (Ghana), Kombewa (Kenya), Lilongwe (Malawi), and Bagamoyo (Tanzania), and a trend for increased PfPR was observed over the 4 surveys for Kintampo, Ghana. Over the 4 surveys, for all sites, PfPR was predominantly higher in the 5-19 years group than in the other age categories. Occurrence of fever and anaemia was associated with high P. falciparum parasitaemia. Univariate analyses showed a significant association of anti-malarial treatment in 4 surveys (odds ratios [ORs]: 0.52, 0.52, 0.68, 0.41) and bed net use in 2 surveys (ORs: 0.63, 0.68, 1.03, 1.78) with lower risk of malaria infection. CONCLUSION: Local PfPR differed substantially between sites and age groups. In children 6 months-4 years old, a significant decrease in prevalence over the 3 years was observed in 4 out of the 8 study sites. Trial registration Clinical Trials.gov identifier: NCT01190202:NCT. GSK Study ID numbers: 114001

    Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    Get PDF
    YesBackground. Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings. The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance. Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination.This work was supported by the Flemish Ministry of Sciences (EWI, SOFI project IDIS).This paper has been subject to a correction. Please see Correction file above

    Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries

    Full text link

    A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa

    Get PDF
    Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures
    • …
    corecore