94 research outputs found

    Interploidy Hybridization In Sympatric Zones: The Formation Of Epidendrum Fulgens × E. Puniceoluteum Hybrids (epidendroideae, Orchidaceae).

    Get PDF
    Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.33824-3

    Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs

    Get PDF
    Premise of the study: The mating system is an important component of the complex set of reproductive isolation barriers causing plant speciation. However, empirical evidence showing that the mating system may promote reproductive isolation in co-occurring species is limited. The mechanisms by which the mating system can act as a reproductive isolation barrier are also largely unknown. Methods: Here we studied progeny arrays genotyped with microsatellites and patterns of stigma–anther separation (herkogamy) to understand the role of mating system shifts in promoting reproductive isolation between two hybridizing taxa with porous genomes, Pitcairnia albiflos and P. staminea (Bromeliaceae). Key results: In P. staminea, we detected increased selfing and reduced herkogamy in one sympatric relative to two allopatric populations, consistent with mating system shifts in sympatry acting to maintain the species integrity of P. staminea when in contact with P. albiflos. Conclusions: Mating system variation is a result of several factors acting simultaneously in these populations. We report mating system shifts as one possible reproductive barrier between these species, acting in addition to numerous other prezygotic (i.e., flower phenology and pollination syndromes) and postzygotic barriers (Bateson–Dobzhansky–Muller genetic incompatibilities)

    Limited pollen flow and high selfing rates toward geographic range limit in an Atlantic forest bromeliad

    Get PDF
    Bromeliaceae is a Neotropical family that evolved ecological key innovations in association with extensive adaptive radiation. Its species present a variety of different mating system strategies varying within and among species, within genera and subfamilies. Also, species with a wide geographical range can display large variation in mating system, reproductive success and genetic diversity. Here we combined data from hand pollinations and genetic analysis to assess outcomes of contemporary gene flow and mating system variation at the range edge of Vriesea gigantea. Results from pollen germination rates showed that this species is cryptically self-incompatible. Hand-pollination experiments and genetic analysis of progeny arrays revealed that V. gigantea has a mixed mating system, with high selfing rates (s = 0.612), and high inbreeding coefficient (F = 0.372). Inbreeding in V. gigantea at southern edge of its distribution range was caused by high levels of selfing rather than by mating among relatives. Moreover, strong pollen pool genetic structure was observed (Ω’FT = 0.671), with an increase from north to south. The parameters observed help us to understand historical and ecological conditions under which V. gigantea has experienced moderate to high levels of selfing in the face of reduced pollen flow from central to peripheral populations due to recent southward range expansion

    Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical ‘inselbergs': Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae)

    Get PDF
    Background and Aims Bromeliads (Bromeliaceae) adapted to rock outcrops or ‘inselbergs' in neotropical rain forests have been identified as suitable plant models for studying population divergence and speciation during continental plant radiations. Little is known about genetic relationships and variation in reproductive strategies within and among inselberg-adapted species, yet knowledge of these parameters is important for understanding divergence processes and for conservation planning. Methods Nuclear microsatellites were used to assess the role of clonal reproduction, estimate genetic diversity and explore genetic relationships and variation in reproductive strategies for a total of 15 populations of four closely related Alcantarea inselberg species in south-eastern Brazil: A. glaziouana, A. regina, A. geniculata and A. imperialis. Key Results Clonal propagation is frequent in coastal populations of A. glaziouana and A. regina, but absent in the high-altitude species A. geniculata and A. imperialis. Considerable variation in clonal diversity, gene diversity (He), allelic richness, and Wright's inbreeding coefficient (FIS) exists within and between species of Alcantarea. A Bayesian analysis of coastal inselberg species indicated pronounced genetic structure. A neighbor-joining analysis grouped populations of each species together with moderate bootstrap support, except for the high altitude species A. imperialis. Conclusions The coastal inselberg species A. glaziouana and A. regina tend to propagate asexually via vegetative clonal growth, and both reproductive strategies and breeding systems vary greatly between populations and species of Alcantarea. The microsatellite data indicate a history of hybridization and reticulation involving the high-altitude species A. geniculata and A. imperialis in areas of co-occurrence. The results highlight the need to understand similarities and differences in reproductive strategies both within and between related species for conservation planning and as a basis for understanding evolutionary processes in tropical radiation

    Phylogeography and genetic differentiation along the distributional range of the orchid Epidendrum fulgens: a Neotropical coastal species not restricted to glacial refugia

    Get PDF
    Aim  Phylogeographical studies in the Brazilian Atlantic Forest (BAF) have mostly included species associated with forest habitats, whereas taxa associated with grassland and sand-dune plant communities have so far been largely overlooked. This study examines the phylogeography of the orchid Epidendrum fulgens, which occurs on coastal sand dunes and granitic outcrops, in order to identify major genetic divergences or disjunctions across the range of the species and to investigate the genetic signatures of past range contractions and expansions.Location  Southern and south-eastern seashore vegetation along the BAF biome, and granitic and arenitic outcrops that occur in the subtropical grassland plant communities located south of the BAF.Methods  Nine nuclear and four plastid microsatellite loci were used to genotype 424 individuals from 16 populations across the distributional range of E. fulgens. For both sets of markers, we estimated genetic diversity and population differentiation, testing for a north–south gradient of genetic diversity. The plastid haplotype network and a Bayesian assignment analysis of nuclear markers were used to infer population structure. Past demographic changes were investigated using a coalescence approach.Results  A deep disjunction was found between northern populations within the BAF and southern populations outside the BAF that occur on granitic and arenitic outcrops. Recent demographic reductions were detected in northern populations on coastal sands. Such demographic changes were not expected for those populations, as previous studies with forest species had found evidence of population expansion in the same areas. Higher genetic diversity was found in southern populations on granite, in contrast to patterns observed in previous studies of forest species.Main conclusions  The results are consistent with the long-term persistence of E. fulgens. Bottlenecks were detected in populations from areas where population expansion events have been detected in other plant (and animal) species, suggesting that forest expansion after the Last Glacial Maximum played a role in the population fragmentation and decrease in genetic diversity in E. fulgens. A substantial genetic division in E. fulgens corresponds to the ‘Portal de Torres’, a region that demarcates the northern limits of subtropical grassland plant communities and the southern limits of the BAF

    Cross-amplification and characterization of microsatellite loci for the Neotropical orchid genus Epidendrum

    Get PDF
    In this study we tested the cross-amplification of 33 microsatellite loci previously developed for two closely related Neotropical orchid genera (Epidendrum and Laelia). A set of ten loci were polymorphic across five examined species (20 individuals each) with 2 to 15 alleles per locus. The mean expected and observed heterozygosity (average across species) ranged from 0.34 to 0.82 and from 0.27 to 0.85, respectively. In addition we tested all loci in 35 species representative of the genus Epidendrum. Of these, 26 loci showed successful amplification. Cross-application of these loci represent a potential source of co-dominant markers for evolutionary, ecological and conservation studies in this important orchid genus

    Global commitments to conserving and monitoring genetic diversity are now necessary and feasible

    Get PDF
    Global conservation policy and action have largely neglected protecting and monitoring genetic diversity—one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species’ adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity

    Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved

    Get PDF
    The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD framework has far-reaching consequences- it will guide conservation actions and reporting for each member country until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global conservation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al., 2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current indicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the proportion of populations maintained within species, 3) the number of species and populations in which genetic diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020 biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via national and global policy for decades to come. Previous article in issu

    Global commitments to conserving and monitoring genetic diversity are now necessary and feasible

    Get PDF
    Global conservation policy and action have largely neglected protecting and monitoring genetic diversity—one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species’ adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity
    • 

    corecore